首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We devise a new, two-level discrete-particle model to simulate ordered colloidal structures with vastly different scales. We use the molecular dynamics paradigm with a Lennard-Jones-type potential to define colloidal particle system and dissipative particle dynamics (DPD) to model the solvent. The initially mixed, disordered particle ensemble undergoes a phase transition. We observe the spontaneous creation of spherical or rod-like micelles and their crystallization in stable hexagonal or worm-like structures, respectively. The ordered arrays obtained by using the particle model are similar to the two-dimensional colloidal crystals observed in laboratory experiments. The micelle shape depends on the ratio between the scaling factors of the colloid-colloid to colloid-solvent particle interactions. The properties of the DPD solvent, such as the strongly variable viscosity and partial pressure, determine the speed of crystallization. The intriguing features of colloidal arrays and their exotic symmetries, which persist also over two-dimensional domains, can be simulated numerically by using the two-level discrete-particle approach and are illustrated here. Copyright 2000 Academic Press.  相似文献   

2.
Templating processes for creating polymerized hydrogels are reviewed. The use of contact photonic crystals and of non-contact colloidal crystalline arrays as templates are described and applications to chemical sensing and device fabrication are illustrated. Emulsion templating is illustrated in the formation of microporous membranes, and templating on reverse emulsions and double emulsions is described. Templating in solutions of macromolecules and micelles is discussed and then various applications of hydrogel templating on surfactant liquid crystalline mesophases are illustrated, including a nanoscale analogue of colloidal crystalline array templating, except that the bead array in this case is a cubic array of nonionic micelles. The use of particles as templates in making core-shell and hollow microgel beads is described, as is the use of membrane pores as another illustration of confinement templating.  相似文献   

3.
The formation and subsequent transformations of mesostructured silica within the confined tubular environment of anodic alumina membrane (AAM) channels [porous alumina membrane (PAM) channels] were investigated for the first time in situ with grazing incidence small-angle X-ray scattering (GISAXS) techniques, in combination with ex situ transmission electron microscopy (TEM) of the same samples. A better understanding of the mesostructure formation mechanism within the confined space of the AAM pores is a direct result of this study. Three different surfactants were used as the structure-directing agents in acid-catalyzed silica synthesis solutions. With ionic cetyltrimethylammonium bromide acting as the structure-directing agent, a columnar hexagonal structure with mesopores oriented parallel to the AAM channels was observed to form directly from the beginning of the synthesis. In samples synthesized with the nonionic surfactants Brij 56 and Pluronic P123, a circular hexagonal structure was found to form first; here, the mesopores are aligned around the circumference of the AAM channels. The circular structure subsequently transforms directly into a columnar hexagonal (P123 surfactant), or a mixture of columnar hexagonal and a new curved lamellar phase with lamellae oriented parallel to the walls of the AAM channels (Brij 56 surfactant). These transformations occur after complete solvent evaporation and therefore differ from a simple evaporation-induced phase formation. The existence of a previously postulated lamellar phase could be proven by GISAXS and TEM investigations.  相似文献   

4.
Monolithic pieces of hierarchically structured silica, containing both periodic macropores and mesopores with well-controlled architecture, are synthesized by dual templating methods. Colloidal crystal templating with close-packed arrays of poly(methyl methacrylate) spheres yields regular, highly interconnected macropores a few hundred nanometers in diameter, and templating with nonionic surfactants produces mesoporosity (2.5-5.1 nm pore diameters) in the macropore walls. Several distinct mesostructures can be achieved within the silica skeleton, depending on the choice of surfactant, co-surfactant, and processing conditions. In the three-dimensional (3D) confinement of the colloidal crystal template, wormlike channels, cubic (Pm3n), or two-dimensional (2D) hexagonal (P6mm) mesostructures are produced with the surfactant Brij 56 (C16H33(OCH2CH2)nOH (n approximately 10) and dodecane as cosurfactant. In the 2D hexagonal structure, channels are oriented perpendicular to the polymer spheres, thereby connecting adjacent macropores through the silica walls. This orientation contrasts with channel alignment parallel to latex spheres when the polymeric surfactant Pluronic P123 (EO20PO70EO20) is used. On the basis of high-resolution 3D transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, and nitrogen sorption measurements, structural and textural properties of the monoliths are described in detail as a function of the synthesis parameters. The control over the mesoarchitecture of these silica-surfactant systems in 3D confinement is explained by considering the relative dimensions of the mesostructures with respect to the interstitial space in the latex template, interfacial interactions, entropic effects, and structural frustration.  相似文献   

5.
The structural evolution of periodic mesoporous material within the channels of anodic alumina membranes (AAMs) by evaporation‐induced self‐assembly (EISA) is investigated by a combination of in situ grazing‐incidence small‐angle X‐ray scattering (GISAXS) with parallel detection of solvent evaporation and ex situ transmission electron microscopy (TEM). Kinetically controlled and equilibrium‐controlled structural evolution can be distinguished for these EISA processes. A new mechanism for formation of mesostructures in the confined environment of AAMs is proposed. Data are presented for samples synthesized with nonionic surfactants at various surfactant:silica ratios and relative humidities. The formation of and transformations between circular or columnar 2D hexagonal and tubular lamellar structures are observed. The circular hexagonal phase is kinetically favored over the columnar hexagonal orientation. The TEM images provide evidence that phase transformations, depending on their type, either start preferentially at the channel wall or in the center of the mesostructured fibers.  相似文献   

6.
Mesoporous alumina films with large‐sized cage‐type mesopores were prepared by using commercially available diblock copolymer (PS‐b‐PEO) and economic inorganic salt (AlCl3) as aluminum source. The obtained mesopore sizes drastically expand from 35 nm to 80 nm when the amount of ethanol in the precursor solutions were controlled. More interestingly, under an optimized amount of ethanol as co‐solvent, there was no significant change of micelle morphology on the substrate, even though the relative amount of PS‐b‐PEO to alumina source was dramatically varied. When the amount of alumina precursor was decreased, the pore walls gradually became thinner, thereby improving pore connectivity. The ordered mesoporous alumina films obtained in this study exhibit high thermal stability up to 1000 °C, and their frameworks are successfully crystallized to γ‐alumina phase. This technique could also be applicable for creating other metal oxide thin films with large mesopores.  相似文献   

7.
Non-close-packed silica colloidal crystalline array was immobilized by polymer, and effects of stretching on the change of the optical properties and microstructure of the colloidal crystalline arrays have been demonstrated. The immobilization was a two-step polymerization process: the first step was with hydrophilic polyethylene glycol acrylate (PEGA) polymer gel, and the second step was with 2-hydroxyethyl acrylate polymer matrix. The structure of the three-dimensional array was maintained during the immobilizing process with lock in periodic order. The peak wavelength of Bragg diffraction of the polymer-immobilized colloidal crystalline array shifted to shorter wavelength with stretching. The peak shift was caused by the compression of the polymer proportional to the stretching ratio, and the compression was homogeneous throughout the polymer-immobilized colloidal crystalline arrays. These results show that by using polymer-immobilized non-close-packed colloidal crystalline array, mechanically tunable photonic crystals can be realized, and they open the possibility of tuning the microstructure of colloidal crystalline array for photonic crystal.  相似文献   

8.
Detailed nanostructures have been investigated for hierarchically porous alumina aerogels and xerogels prepared from ionic precursors via sol–gel reaction. Starting from AlCl3·6H2O and poly(ethylene oxide) (PEO) dissolved in a H2O/EtOH mixed solvent, monolithic wet gels were synthesized using propylene oxide (PO) as a gelation initiator. Hierarchically porous alumina xerogels and aerogels were obtained after evaporative drying and supercritical drying, respectively. Macroporous structures are formed as a result of phase separation, while interstices between the secondary particles in the micrometer-sized gel skeletons work as mesoporous structures. Alumina xerogels exhibit considerable shrinkage during the evaporative drying process, resulting in relatively small mesopores (from 5.4 to 6.2 nm) regardless of the starting composition. For shrinkage-free alumina aerogels, on the other hand, the median mesopore size changes from 13.9 to 33.1 nm depending on the starting composition; the increases in PEO content and H2O/EtOH volume ratio both contribute to producing smaller mesopores. Small-angle X-ray scattering (SAXS) analysis reveals that variation of median mesopore size can be ascribed to the change in agglomeration state of primary particles. As PEO content and H2O/EtOH ratio increase, secondary particles become small, which results in relatively small mesopores. The results indicate that the agglomeration state of alumina primary particles is influenced by the presence of weakly interacting phase separation inducers such as PEO.  相似文献   

9.
A novel emulsion method has been demonstrated to grow columnar hydrogel colloidal crystals by mixing an aqueous suspension of poly-N-isopropylacrylamide-co-allylamine microgels with organic solvent, driven by the coalescence of micelles consisting of organic oil droplets coated by many microgels. This method leads to microgel colloidal crystals of several centimeters growing from the top to the bottom along the gravity direction. Both temperature and polymer concentration play critical roles for the formation of columnar crystals. A phase diagram has been determined, and it can be used as a guide to selectively grow different crystals, including columnar crystals and randomly oriented crystals, and enable the coexistence of columnar crystals and randomly oriented crystals.  相似文献   

10.
Novel methods for creating protein arrays with two-dimensional control can significantly enhance basic biological research as well as various bioarray applications. We demonstrate that the structural variety and chemical heterogeneity of self-assembled, hexagonal polystyrene-b-poly(vinylpyridine) micelles can be successfully exploited as templates for easy and rapid fabrication of functional protein arrays over a large scale. Spontaneous formation of such polymeric template-guided protein molecules yields high-density protein arrays that exhibit repeat spacings in a nanoscopic dimension. The ensuing self-assembled protein molecules in the array maintain their natural conformation and activity over a very long time period. By tuning the size of the underlying block copolymer templates, our amphiphilic diblock copolymer-based approach to create high-density protein patterns also permits spatial control over two-dimensional repeat spacings of protein nanoarrays. These unique advantages of polystyrene-b-poly(vinylpyridine) templates make the spontaneously constructed protein nanoarrays highly suitable as functional protein sensor substrates. Therefore, our novel two-dimensional protein assembly method can be greatly beneficial for high-throughput proteomic assays and multiplexed high-density protein sensing applications.  相似文献   

11.
This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.  相似文献   

12.
Slow crystallization and growth rate at room temperature in the presence of surfactant micelles is a new strategy used to synthesize hierarchical Na-A zeolites. The observed structure of the hierarchical materials was consistent with a two stage growth mechanism. During the early stage of the gel evolution, miniature zeolite gel particles were formed and assembled around surfactant (cetyltrimethylammonium bromide - CTAB) micelles. In a second stage, the slow mass transformation into crystalline phase and the low growth rate of the formed crystallites retained the CTAB micelles within the crystallization domain. After the removal of CTAB templates, the products showed large mesopores which were attributed to the interstitial voids between the aggregated zeolite nanocrystallites. The size of the mesopores can be further expanded by using linear hydrocarbons as swelling agents. The influences of the added amount of the hydrocarbons and the length of the hydrocarbon chains on the mesopore size were examined. The effects of the aging period and the concentration of CTAB in the synthesis mixture on the pore size distribution were also investigated. The colloidal suspension of the synthesized zeolite showed negative zeta potential throughout the entire range of pH. The mesoporous Na-A zeolite synthesized in this work showed higher ethylene adsorption capacity as compared to the conventional microporous Na-A zeolite. XRD, DLS, SEM, N(2) adsorption-desorption at 77K, TEM, (29)Si NMR and FTIR techniques were used to characterize the hierarchical Na-A zeolite.  相似文献   

13.
The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.  相似文献   

14.
建立了含不同亲疏水粒子比的双亲性无规共聚物粗粒化模型. 采用耗散粒子动力学方法模拟了两亲性无规共聚物选择性溶剂自组装球形胶束表面的亲水性能. 模拟结果表明, 无规共聚物在选择性溶剂中自组装得到实心球形胶束, 球形胶束表面的亲水性与聚合物链亲水粒子含量、溶剂的选择性有关. 随着聚合物链所含亲水粒子增加, 球形胶束表面的亲水性增强. 球形胶束表面的亲水性随着疏水粒子与溶剂粒子间的排斥参数增大而增强, 模拟结果与实验结论一致. 该模拟方法给出的胶束微结构信息可以为双亲无规共聚物分子设计及自组装双亲胶束制备提供一定的理论指导.  相似文献   

15.
The mechanism concerning mesopore formation remains unclear to date. In this letter, linear nuclei were pre-structured on purpose; anodizing with aqueous HF electrolyte, one-dimensional (1D) arrays of mesopores with depths up to 40 μm and diameters down to 20 nm (aspect ratios up to 1300) were fabricated in the dark. Significantly higher pore densities and markedly weaker branches occurred in comparison to randomly formed mesopores. Pore densities could increase with decreased current densities. Breakdown effects combined with current-burst-model were employed to interpret the underlying mechanism in detail; SCR (space charge region) effects were excluded as additional stabilizer of the 1D mesopore arrays.  相似文献   

16.
重质油胶体聚集结构的耗散粒子动力学模拟   总被引:1,自引:0,他引:1  
重质油是以沥青质为胶核分散于饱和油分中形成的极其复杂的胶体体系.本文采用耗散粒子动力学(DPD)方法研究重质油的胶体结构及其影响因素.根据重质油各组分的分子结构特征,构建了描述重质油组分的粗粒化模型化合物.模拟结果表明,本文构建的粗粒化模型能很好地反映重质油的胶体聚集结构.沥青质分子结构对胶体聚集结构有序性有显著影响,较高稠合程度的芳香环结构将使胶束结构有较高的有序性,烷基侧链则表现出分散作用.重质油中的胶质具有胶溶作用,胶质与沥青质的浓度比存在一个极限,当小于这个极限时,重质油将出现聚沉.  相似文献   

17.
We demonstrate the formation of highly ordered hexagonal arrays of hybridized polystyrene–poly(4‐vinyl pyridine), PS–PVP, micelles with controllable size by solvent annealing techniques. Because the formation of hybridized micelles was prohibited in the mixture solutions of two different‐sized PS–PVP micelles, single‐layered films with bimodal self‐assemblies of small and large micelles were fabricated from the mixture solutions by adjusting their mixing ratios. When the single‐layered films were solvent annealed by saturated vapor of tetrahydrofuran (THF), on the other hand, small and large PS–PVP micelles in the bimodal self‐assemblies merged together to form hybridized micelles. In addition, the hybridized micelles arranged themselves in a highly ordered hexagonal array, the diameter and center‐to‐center distance of which were precisely adjusted by varying the mixing ratio of small to large micelles in the bimodal assemblies.

  相似文献   


18.
We have demonstrated the fabrication of a colloidal crystalline array (synthetic opal) from monodispersed mesoporous silica spheres (MMSS) and the control of its optical response simply by changing the amount of benzene vapor adsorbed into the pores of MMSS. It was revealed that the refractive index of the colloidal crystal of MMSS showed an 11.7% increase by taking advantage of benzene adsorption, and thereby, the structural color changed reversibly. We also conducted the same measurement on silica spheres without mesopores and observed no change in the refractive index or the structural color. This optical response gives rise to the possibility of using MMSS colloidal crystals not only for controlling light reflection but also as sensing devices based on color change due to vapor adsorption. We have also incorporated an organic dye, the porphyrin derivative alpha,beta,chi,delta,-tetrakis(1-methylpyridinium-4-yl)porphyrin rho-toluenesulfonate (TMPyP), into the pores of MMSS. By adopting an electrophoretic deposition process in ethanol, periodic arrays fabricated from TMPyP-MMSS conjugates with absolute zeta-potentials near zero were obtained. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths due to an increase in the refractive index with increasing amounts of TMPyP adsorbed in the pores. The current work demonstrates the new possibility of creating colloidal crystals from MMSS with mesopores filled with various kinds of adsorbates to control the optical response effectively.  相似文献   

19.
The growth of ordered nanorods of mesoporous SBA-15 inside a porous alumina membrane has been achieved for the first time by a simple sol-gel method. The obtained SBA-15 nanorods themselves have ordered hexagonal mesochannels with a size of about 6 nm and have been arranged to form hexagonal arrays by the limitation of pores of the alumina membrane. The synthesized alumina membrane with mesoporous SBA-15 inside combines the advantages of porous alumina membranes and mesoporous SBA-15 and provides fine and vertical mesochannels, which may serve as a new and efficient mold and lead to extensive applications in nanodevice fabrication, biomacromolecule separations, etc.  相似文献   

20.
In order to understand how cells respond to concave and convex subcellular surface structures,colloidal crystal array and honeycomb-structured surfaces composed of highly ordered hexagonal units with completely inverse curvature were fabricated via facile self-assembly and breath figure approaches, respectively.The influence of hexagonal surface curvature on cell fate was subsequently investigated. Cells underwent more extensive spreading on the convex colloidal crystal array surface,while adhesive forces were higher on the concave honeycomb surface.The behaviors of cells on the different surfaces were investigated by comparing cell morphology,cellular adhesive force and cytoskeleton structure.The results revealed comprehensive differences in cell behavior between those on concave honeycomb surfaces and convex colloidal crystal arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号