首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to separate the potential arsenite metabolites methylarsonous acid and dimethylarsinous acid from arsenite, arsenate, methylarsonic acid and dimethylarsinic acid, the pH‐dependent retention behaviour of all six arsenic compounds was studied on a Hamilton PRP‐X100 anion‐exchange column with 30 mM phosphate buffers (pH 5, 6, 7, 8 and 9) containing 20% (v/v) methanol as mobile phase and employing an inductively coupled plasma atomic emission spectrometer (ICP–AES) as the arsenic‐specific detector. Baseline separation of dimethylarsinic acid, methylarsonous acid, methylarsonic acid, arsenate and dimethylarsinous acid was achieved with a 30 mmol dm−3 phosphate buffer (pH 5)–methanol mixture (80:20, v/v) in 25 min. Arsenite is not baseline‐separated from dimethylarsinic acid under these conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Plants and soil collected above an ore vein in Gasen (Austria) were investigated for total arsenic concentrations by inductively coupled plasma mass spectrometry (ICP‐MS). Total arsenic concentrations in all samples were higher than those usually found at non‐contaminated sites. The arsenic concentration in the soil ranged from ∼700 to ∼4000 mg kg−1 dry mass. Arsenic concentrations in plant samples ranged from ∼0.5 to 6 mg kg−1 dry mass and varied with plant species and plant part. Examination of plant and soil extracts by high‐performance liquid chromatography–ICP‐MS revealed that only small amounts of arsenic (<1%) could be extracted from the soil and the main part of the extractable arsenic from soil was inorganic arsenic, dominated by arsenate. Trimethylarsine oxide and arsenobetaine were also detected as minor compounds in soil. The extracts of the plants (Trifolium pratense, Dactylis glomerata, and Plantago lanceolata) contained arsenate, arsenite, methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, the tetramethylarsonium ion, arsenobetaine, and arsenocholine (2.5–12% extraction efficiency). The arsenic compounds and their concentrations differed with plant species. The extracts of D. glomerata and P. lanceolata contained mainly inorganic arsenic compounds typical of most other plants. T. pratense, on the other hand, contained mainly organic arsenicals and the major compound was methylarsonic acid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The determination of total arsenic and of arsenic compounds in biological and inorganic samples is a task frequently encountered by analysts. Several elecrochemical methods have been developed for the determination of total arsenic (generally after mineralization of the sample), arsenite, arsenate, methylarsonic acid and dimethylarsinic acid. The electrochemical behavior of several other organic arsenic compounds was also studied. This paper reviews these electrochemical methods, their application to environmental samples, and the problems encountered in the electrochemical determination of arsenic and arsenic compounds.  相似文献   

4.
Arsenic compounds were extracted with chloroform/methanol/water from tissues of marine animals (four carnivores, five herbivores, five plankton feeders). The extracts were purified by cation and anion exchange chromatography. Arsenobetaine [(CH3)3As+CH2COO?], dimethylarsinic acid [(CH3)2AsOOH], trimethylarsine oxide [(CH3)3AsO] and arsenite, arsenate, and methylarsonic acid [(CH3)AsO(OH)2] as a group with the same retention time were identified by high-pressure liquid chromatography. Arsenic was determined in the collected fractions by graphite furnace atomic absorption spectrometry. Arsenobetaine found in all the animals was almost always the most abundant arsenic compound in the extracts. These results show that arsenobetaine is present in marine animals independently of their feeding habits and trophic levels. Arsenobetaine-containing growth media (ZoBell 2216E; solution of inorganic salts) were mixed with coastal marine sediments as the source of microorganisms. Arsenobetaine was converted in both media to trimethylarsine oxide and trimethylarsine oxide was converted to arsenite, arsenate or methylarsonic acid but not to dimethylarsinic acid. The conversion rates in the inorganic medium were faster than in the ZoBell medium. Two dominant bacterial strains isolated from the inorganic medium and identified as members of the Vibro–Aeromonas group were incapable of degrading arsenobetaine.  相似文献   

5.
An arsenic chemical speciation study was performed in 2000, using air filters on which total suspended particles (TSP) were collected, from the city of Huelva, a medium size city with huge industrial influence in SW Spain. Different procedures for extraction of the arsenic species were performed using water, NH2OH.HCl, and H3PO4 solutions, with either microwave or ultrasonic radiation. The best optimised extraction methods were use of 100 mmol L–1 NH2OH.HCl and 10 mmol L–1 H3PO4 and microwave radiation for 4 min. High-performance liquid chromatography coupled with hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) was employed for determination of the arsenic species. The results from 12 TSP air filters collected on a monthly basis showed extraction was quantitative (94% with NH2OH.HCl and 86% H3PO4). Only inorganic arsenic species (arsenite and arsenate) were detected. The mean arsenite concentration was 1.2±0.3 ng m–3 (minimum 0.3 ng m–3, maximum 1.8 ng m–3). The mean arsenate concentration was 10.4±1.8 ng m–3, with greater monthly variations than arsenite (minimum 2.1 ng m–3, maximum 30.6 ng m–3). The high level of arsenic species in the TSP samples can be related to a copper smelter located in the region.  相似文献   

6.
系统地研究了碱性条件下(pH8~10.8)As3+,As5+,MA,DMA和AB等砷化合物在PRP-X100阴离子交换柱上的保留行为。用火焰原子吸收光谱(FAAS)测定从HPLC分离的砷化合物,即通过一根1m×0.23mmi.d.不锈钢毛细管,将HPLC柱出口与FAAS的雾化器连接起来,采用乙炔/空气火焰,在193.7nm处测定。具体研究了两个流动相(20mmol/LNH4HCO3和2.5mmol/L对-羟基苯甲酸-1.0mmol/L苯甲酸水溶液)。  相似文献   

7.
Arsenic species in arsenic accumulating mush- rooms (Sarcosphaera coronaria, Laccaria amethystina, Sarcodon imbricatum, Entoloma lividum, Agaricus haemorrhoidaius, Agaricus placomyces, Lycoperdon perlatum) were determined. HPLC/ICP MS and ion-exchange chromatogra- phy–instrumental neutron activation analysis (NAA) combinations were used. The remarkable accumulator Sarcosphaera coronaria (up to 2000 mg As kg?1 dry wt) contained only methylarsonic acid, Entoloma lividum only arsenite and arsenate. In Laccaria amethystina dimethylarsinic acid was the major arsenic compound. Sarcodon imbricatum and the two Agaricus sp. were found to contain arsenobetaine as the major arsenic species, a form which had previously been found only in marine biota. Its identification was confirmed by electron impact MS.  相似文献   

8.
Blue mussels (Mytilus edulis) were exposed to 100 μg As dm?3 in the form of arsenite, arsenate, methylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium iodide or dimethyl-(2-hydroxyethyl)arsine oxide in seawater for 10 days. The seawater was renewed and spiked with the arsenic compounds daily. Analyses of water samples taken 24 h after spiking showed that arsenobetaine and arsenocholine had been converted to trimethylarsine oxide, whereas trimethylarsine oxide and tetramethylarsonium iodide were unchanged. Arsenobetaine was accumulated by mussels most efficienty, followed in efficiency by arsenocholine and tetramethylarsonium iodide. None of the other arsenic compounds was significantly accumulated by the mussels. Extraction of mussel tissues with methanol revealed that control mussels contained arsenobetaine, a dimethyl-(5-ribosyl)arsine oxide and an additional arsenic compound, possibly dimethylarsinic acid. Mussels exposed to arsenobetaine contained almost all their experimentally accumulated arsenic as arsenobetaine, and mussels exposed to tetramethylarsonium iodide contained it as the tetramethylarsonium compound. Mussels exposed to arsenocholine had arsenobetaine as the major arsenic compound and glycerylphosphorylarsenocholine as a minor arsenic compound in their tissues. The results show that arsenobetaine and arsenocholine are efficiently accumulated from seawater by blue mussels and that in both cases the accumulated arsenic is present in the tissues as arsenobetaine. Consequently arsenobetaine and/or arsenocholine present at very low concentrations in seawater may be responsible for the presence of arsenobetaine in M. edulis and probably also among other marine animals. The quantity of arsenobetaine accumulated by the mussels decreases with increasing concentrations of betaine. HPLC-ICP-MS was found to be very powerful for the investigation of the metabolism of arsenic compounds in biological systems.  相似文献   

9.
Mycobacterium neoaurum demethylates both methylarsonic acid and methylarsonous acid to mixtures of arsenate and arsenite. After 28 days of incubation, the yields of inorganic arsenic were 27% from arsenate and 43% from arsenite. A time study of the demethylation of methylarsonic acid by M. neoaurum showed that demethylation occurs rapidly during the growth and stationary phases of the bacterium, and indicates that MMA(V) is reductively demethylated to arsenite. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Arsenic compounds were determined in 21 urine samples collected from a male volunteer. The volunteer was exposed to arsenic through either consumption of codfish or inhalation of small amounts of (CH3)3As present in the laboratory air. The arsenic compounds in the urine were separated and quantified with an HPLC–ICP–MS system equipped with a hydraulic high-pressure nebulizer. This method has a determination limit of 0.5 μg As dm−3 urine. To eliminate the influence of the density of the urine, creatinine was determined and all concentrations of arsenic compounds were expressed in μg As g−1 creatinine. The concentrations of arsenite, arsenate and methylarsonic acid in the urine were not influenced by the consumption of seafood. Exposure to trimethylarsine doubled the concentration of arsenate and increased the concentration of methylarsonic acid drastically (0.5 to 5 μg As g−1 creatinine). The concentration of dimethylarsinic acid was elevated after the first consumption of fish (2.8 to 4.3 μg As g−1 creatinine), after the second consumption of fish (4.9 to 26.5 μg As g−1 creatinine) and after exposure to trimethyl- arsine (2.9 to 9.6 μg As g−1 creatinine). As expected, the concentration of arsenobetaine in the urine increased 30- to 50-fold after the first consumption of codfish. Surprisingly, the concentration of arsenobetaine also increased after exposure to trimethylarsine, from a background of approximately 1 μg As g−1 creatinine up to 33.1 μg As g−1 creatinine. Arsenobetaine was detected in all the urine samples investigated. The arsenobetaine in the urine not ascribable to consumed seafood could come from food items of terrestrial origin that—unknown to us—contain arsenobetaine. The possibility that the human body is capable of metabolizing trimethyl- arsine to arsenobetaine must be considered. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
Two areas near derelict calciners in Cornwall (UK) were chosen to study the uptake of arsenic from arsenic-contaminated soil into indigenous plants (heather, Calluna vulgaris; blackberry, Rubus ulmifulmus; gorse, Ulex europaeus). With total arsenic concentrations in soil ranging from 1240 to 2860 mg kg?1 at Site 1 (Tuckingmill), no adverse effects on the growth of the plants studied were observed. Very low soil-to-plant transfer factors (0.01 to 0.03) were found although they were much higher when the extractable soil arsenic concentrations were taken into account (0.1 to 1.1). In the central dump area at Site 2 (Bissoe, 9.78% [w/w] arsenic in soil), the only plant to grow was heather, although it was severely impaired. However, heather was thriving at the edge of the dump where higher soil arsenic concentrations were found (10.32% [w/w]), indicating that arsenic is not a growth-limiting factor in itself. Soil-to-plant transfer factors in the range 2 × 10?5–9 × 10?4 confirm that arsenic is indeed effectively excluded from uptake, even taking into account extractable soil arsenic concentrations (9 × 10?4–1.2 × 10?2).

Extraction of bioavailable arsenic from soil using 0.05 mol L?1 ammonium sulphate yielded recoveries from 1.18 to 3.34% of the total arsenic, predominantly in the form of arsenate. Extraction of arsenic and its metabolites from plants was achieved with water or a water/methanol mixture yielding recoveries up to 22.4% of the total arsenic, with arsenite and arsenate the predominant arsenic species and a minor fraction consisting of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide. The identity of the remainder of the non-extractable arsenic species still has to be revealed. Although the data suggest that higher plants synthesise organoarsenic compounds it cannot be excluded that symbiotic organisms have synthesised these compounds.  相似文献   

12.
Coral limestones were treated with an aqueous solution of aluminium sulfate and thereby aluminium-loaded coral limestones (Al-CL) were prepared. By use of Al-CL as an adsorbent, the adsorption of inorganic arsenic compounds (arsenate [As(V)] and arsenite [As(III)] and of organic arsenic compounds (methylarsonic acid, dimethylarsinic acid, and arsenobetaine) was examined. The adsorption ability of Al-CL is superior to that of iron(III)-loaded coral limestone (Fe-CL) for As(V), As(III), methylarsonic acid and dimethylarsinic acid. The adsorption of As(V) and As(III) is almost independent of the initial pH over a wide range (2 or 3 to 11). The addition of other anions, such as chloride, nitrate, sulfate and acetate, in the solution does not affect the adsorption of As(V) and As(III), whereas the addition of phosphate greatly interferes with the adsorption. Arsenic adsorption is effectively applied to a column-type operation and the adsorption capability for As(V) is 150 μg/g coral limestone.  相似文献   

13.
Batch experiments were conducted on aqueous solutions containing arsenite, arsenobetaine, methylarsonic acid or phenylarsonic acid in contact with natural zeolites to examine their interaction. The concentration of the arsenic species in the liquid phase at equilibrium before and after contact was measured by means of liquid chromatography coupled with inductively coupled plasma mass spectrometry detection. Clinoptilolites completely removed arsenobetaine from the solution and the resulting amounts of dimethylarsinic acid were detected. The methylarsonic acid maximum concentration diminution was reached at a mass—to volume V value of m/V = 0.2. Phenylarsonic acid solution decreased its concentration 75% after treatment with clinoptilolites. Untreated mordenites in contact with arsenite solutions led to the formation of arsenate, whereas acid‐washed mordenites practically removed arsenobetaine and were less effective for methylarsonic acid. To show the incompatibility of molecular dimensions with the zeolite windows, the molecular parameters of surface area, molecular volume, molecular length, and the width and depth of arsenite, arsenate and a series of ten organic arsenic compounds were calculated. Since sorption onto the external zeolite surface rather than a sieve process defined the interaction, an acid‐catalysed reaction mechanism is proposed to explain the transformation results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Pergantis SA  Winnik W  Heithmar EM  Cullen WR 《Talanta》1997,44(11):1941-1947
Mass spectrometry was used to detect transfer of deuterium from labeled reagents to arsines following hydride-generation reactions. The arsine gases liberated from the reactions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid with HCl and NaBD(4) in H(2)O, or with DCl and NaBH(4) in D(2)O, were examined. Differences in the mode of deuterium incorporation for the various arsines were detected. These results may help explain some of the observed variations in arsine-generation efficiency for various arsenic compounds present in environmental and biological samples.  相似文献   

15.
The HPLC separation of arsenite, arsenate, methylarsonic acid and dimethylarsinic acid has been studied in the past but not in a systematic manner. The dependence of the retention times of these arsenic compounds on the pH of the mobile phase, on the concentration and the chemical composition of buffer solutions (phosphate, acetate, potassium hydrogen phthalate) and on the presence of sodium sulfate or nickel sulfate in the mobile phase was investigated using a Hamilton PRP-X100 anion-exchange column. With a flame atomic absorption detector and arsenic concentrations of at least 10 mg dm?3 all investigated mobile phases will separate the four arsenic compounds at appropriate pH values in the range 4–8. The shortest analysis time (?3 min) was achieved with a 0.006 mol dm?3 potassium hydrogen phthalate mobile phase at pH 4, the longest (?10 min) with 0.006 mol dm?3 sodium sulfate at pH 5.9 at a flow rate of 1.5 cm3 min?1. With a graphite furnace atomic absorption detector at the required, much lower, flow rate of ?0.2 cm3 min?1 acceptable separations were achievable only with the pH 6 phosphate buffer (0.03 mol dm?3) and the nickel sulfate solution (0.005 mol dm?3) as the mobile phase. To become detectable approximately 100 ng arsenic from each arsenic compound (100 μl injection) must be chromatographed with the phosphate buffer, and approximately 10 ng with the nickel sulfate solution.  相似文献   

16.
In the present study, the extraction of the arsenic species arsenite (As(III)), arsenate (As(V)), monomethyarsonic (MMA) and dimethylarsinic acid (DMA) from airborne particulate filters was investigated and optimized. For this purpose, total suspended particulate matter as well as size fractionated aerosol samples were collected from the industrial area of Aspropyrgos, Greece, in glass fibre and polycarbonated filters, respectively. Among H3PO4 and HCl, tested in various concentrations, concentrated HCl was found to be the most effective extractant for arsenic from both polycarbonated and glass fibre filters, without provoking any arsenic species transformation. However, the quantitative extraction of arsenic species from glass fibre filters required the subsequent washing of the filters with ultrapure water after their leaching with concentrated HCl. The developed procedure was applied to airborne particulate filters for arsenic speciation in Aspropyrgos' atmosphere. The results showed an enrichment of As in the fine (PM2.5) compared with the coarse (PM10–2.5) fraction of airborne particulates, while As(V) was found to be the predominant arsenic species in all samples. Finally, As concentration in the PM10 fraction, for the investigated area and time period from December 2004 to June 2006, was below the target value of 6 ng As m− 3, referred in the Directive 2004/107 of European Union.  相似文献   

17.
Eight extraction agents (water, methanol–water mixtures in various ratios, methanol, a 20 mmol l?1 ammonium phosphate buffer, and a methanol–phosphate buffer) were tested for the extraction of arsenic compounds from fruits, stems + leaves, and roots of pepper plants grown on soil containing 17.2 mg kg?1 of total arsenic. The arsenic compounds in the extracts were determined using high‐performance liquid chromatography–hydride generation inductively coupled plasma mass spectrometry. Whereas pure water was the most effective extraction agent for fruits (87 ± 3.3% extraction yield) and roots (96 ± 0.6% extraction yield), the 20 mM ammonium phosphate buffer at pH 6 extracted about 50% of the arsenic from stems + leaves. Decreasing extractability of the arsenic compounds was observed with increasing methanol concentrations for all parts of the pepper plant. In pepper fruits, arsenic(III), arsenic(V), and dimethylarsinic acid (DMA) were present (25%, 37%, and 39% respectively of the extractable arsenic). Arsenic(V) was the major compound in stems + leaves and roots (63% and 53% respectively), followed by arsenic(III) representing 33% and 42% respectively, and small amounts (not exceeding 5%) of DMA and methylarsonic acid were also detected. Hence, for a quantitative extraction of arsenic compounds from different plant tissues the extractant has to be optimized individually. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The behavior of arsenite, methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, dimethyl-R-arsine oxides, and trimethyl-R-arsonium compounds (R = carboxymethyl, 2-carboxyethyl, 2-hydroxyethyl) toward sodium borohydride and hot aqueous sodium hydroxide was investigated. The arsines obtained by sodium borohydride reduction of the undigested and digested solutions were collected in a liquid-nitrogen cooled trap, separated with a gas chromatograph, and detected with a mass spectrometer in the selected-ion-monitoring mode. The investigated arsenic compounds were stable in hot 2 mol dm?3 sodium hydroxide except arsenobetaine [trimethyl(carboxymethyl)arsonium zwitterion] that was converted to trimethylarsine oxide, and dimethyl(ribosyl)arsine oxides that were decomposed to dimethylarsinic acid. Hydride generation before and after digestion of extracts from marine organisms allowed inorganic arsenic, methylated arsenic, arsenobetaine, and ribosyl arsenic compounds to be identified and quantified. This method was applied to extracts from shellfish, fish, crustaceans, and seaweeds.  相似文献   

19.
The pH-dependent retention behavior of arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium iodide (cationic arsenic compounds), arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid (anionic arsenic compounds) was studied on a Hamilton PRP-1 reversed-phase column (250×4.1 mm I.D.) with 10 mM aqueous solutions of benzensulfonic acids (X-C6H4SO3; X=H, 4-HO, 3-CO2H; 4-HO-3-HO2C-C6H3SO3) as ion-pairing reagents in the pH range 2–5 using flame atomic absorption spectrometry as the arsenic-specific detector. The dependencies of the k′-values of the ‘cationic’ arsenic compounds was rationalized on the basis of the protonation/deprotonation behavior of the arsenic compounds and of the four benzenesulfonates. The results provided evidence for the formation of a cationic species from trimethylarsine oxide below pH 3. Benzenesulfonate is the most hydrophobic ion-pairing reagent causing strong retention of the cationic arsenic compounds and consequently impeding their rapid separation. With the less hydrophobic, substituted benzenesulfonates the cationic arsenic compounds had retention times not exceeding 6 min. At a flow-rate of 1.5 cm3 min−1 10 mM aqueous 3-carboxy-4-hydroxybenzenesulfonate solution adjusted to pH 3.5 allowed the separation of arsenate, methylarsonic acid, arsenobetaine, trimethylarsine oxide, the tetramethylarsonium ion, and arsenocholine within 3 min. Dimethylarsinic acid coelutes with arsenobetaine at pH 3.5, but can be separated from arsenobetaine with the same mobile phase at pH 2.5. At pH 2.5 the signals for trimethylarsine oxide, the tetramethylarsonium ion, and arsenocholine are too broad to be useful for quantification. Arsenite and methylarsonic acid cannot be separated under these conditions.  相似文献   

20.
A sequential arsenic extraction method was developed that yielded extraction efficiencies (EE) that were approximately double those using current methods for terrestrial plants. The method was applied to plants from two arsenic contaminated sites and showed potential for risk assessment studies. In the method, plants were extracted first by 1:1 water-methanol followed by 0.1 M hydrochloric (HCl) acid. Total arsenic in plant and soil samples collected from contaminated sites was mineralized by acid digestion and detected by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and hydride generation-atomic absorption spectrometry (HG-AAS). Arsenic speciation was done by high performance liquid chromatography coupled with HG-AAS (HPLC-HGAAS) and by HPLC coupled with ICP-mass spectrometry (HPLC-ICP-MS). Spike recovery experiments with arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) showed stability of the species in the extraction processes. Speciation analysis by X-ray absorption near edge spectroscopy (XANES) demonstrated that no transformation of As(III) and As(V) occurred due to sample handling. Dilute HCl was efficient in extracting arsenic from plants; however, extraction and determination of organic species were difficult in this medium. Sequential extraction with 1:1 water-methanol followed by 0.1 M-HCl was most useful in extracting and speciating both organic and inorganic arsenic from plants. Trace amounts of MA and DMA in plants could be detected by HPLC-HGAAS aided by the process of separation and preconcentration of the sequential extraction method. Both organic and inorganic arsenic compounds could be detected simultaneously in synthetic gastric fluid extracts (GFE) but EEs by this method were lower than those of the sequential method. The developed sequential method was shown to be reliable and applicable to various terrestrial plants for arsenic extraction and speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号