首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An effective method utilizing the same RP chromatographic column with different pH in first and second LC dimensions has been developed for separation of the basic compounds from traditional Chinese medicines (TCMs). In this work, the alkaloids in Corydalis yanhusuo which is an important TCM were selected as a model to develop the method. The additives and pH values of the mobile phase were optimized in this work. To investigate the feasibility of this method, off-line mode separation was performed in the experiments. According to the UV-absorption intensity, there were eight fractions collected in acidic conditions. All the fractions were analyzed in basic conditions. The results showed that the chromatographic selectivities were significantly different in the separations performed with acidic and alkaline elution systems. Complementary separation was achieved in this work. It is demonstrated that this method would be an effective tool for alkaloids research. Based on the different pH of the mobile phase in this method, it could also be suitable to analyze compounds which were sensible to the pH of the solution.  相似文献   

2.
The optimal extraction condition for extracting quaternary ammonium alkaloid dehydrocorydaline from Corydalis yanhusuo W. T. Wang was investigated using orthogonal experimental design. pH‐zone‐refining counter‐current chromatography (CCC) with normal phase elution was successfully applied to preparative separation of alkaloids from the crude extract of Corydalis yanhusuo. The separation was performed with a biphasic solvent system composed of chloroform (CHCl3)–methanol (MeOH)–water (2:1:1, v/v), in which the lower organic phase containing 10 mM of triethylamine was used as the mobile phase, while the upper aqueous phase containing 10 mM of hydrochloric acid was used as the stationary phase. The separation mechanism of quaternary ammonium alkaloids using pH‐zone‐refining CCC was discussed in comparison with standard high‐speed CCC. In the present study, the separation of 1.200 g of crude sample yielded 129 mg of dehydrocorydaline and 12 mg of palmatine at a high purity of 94 and 92%, respectively. Recovery for dehydrocorydaline and palmatine was 85 and 86%, respectively.  相似文献   

3.
Formalin-induced pain models were used in rats to evaluate the antinociceptive effect of the total alkaloids of Corydalis yanhusuo (TAC). The results indicated that formalin-evoked spontaneous nociceptive responses (licking behavior) could be inhibited significantly by giving (intragingival) TAC at a single dose of 150 mg/kg. Subsequently, an online comprehensive two-dimensional biochromatography method with a silica-bonded human serum albumin (HSA) column in the first dimension and a monolithic ODS column in the second was developed. The absorbed bioactive components were screened by comparing and contrasting the components detected in the plasma and striatum with those in TAC. More than 100 compounds were separated and detected in the TAC, among which 13 compounds were identified. About 40 compounds (seven compounds identified) were absorbed into the plasma with appropriate concentrations and about 20 compounds (four compounds identified) passed through the blood-brain barrier into the striatum. Of interest, four compounds (protopine, glaucine, tetrahydropalmatine, and corydaline) which were reported to possess profound antinociceptive effects exhibited high concentrations in the striatum. This may result from their synergistic effects in regulating the formalin-induced nociception. The results indicated that the comprehensive two-dimensional biochromatography method developed is capable of screening the bioactive components in Corydalis yanhusuo and providing valuable information for understanding the mechanisms by which Corydalis yanhusuo alleviates nociception.  相似文献   

4.
Positively charged reversed‐phase liquid chromatography was employed for the efficient preparative separation of isoquinoline alkaloids from Corydalis impatiens. Ten commercially available columns were compared for isoquinoline alkaloids analysis. While tailing, overloading, lower resolution, and buffer salts limited the application in purification of isoquinoline compounds of many of these columns, one positively charged reversed‐phase C18 column (XCharge C18) overcame these drawbacks, allowing for favorable separation resolution, even when loading isoquinoline compounds on a larger, preparative scale. The general separation process is as follows. First, isoquinoline alkaloids are enriched with Corydalis impatiens extract via a middle chromatogram isolated gel column. After column selection, separation is performed on an XCharge C18 analytical column, from which two evident chromatographic peaks are readily obtained. Finally, two isoquinoline alkaloids (protopine and corydamine) are selectively purified on the XCharge C18 preparative column. These results demonstrate that a middle chromatogram isolated gel column coupled with positively charged reversed‐phase liquid chromatography is effective for the preparative separation of isoquinoline alkaloids from Corydalis impatiens.  相似文献   

5.
We established a two‐dimensional strong cation exchange/reversed‐phase liquid chromatography protocol to isolate and purify isoquinoline alkaloids from Corydalis impatiens. Isoquinoline alkaloids were first enriched from a C. impatiens extract in which liposoluble components were removed using a medium‐pressure chromatographic tower containing middle chromatogram isolated gel. A strong cation exchange column was employed to separate and obtain 30 fractions. We chose fractions 22–29 for reversed‐phase liquid chromatography purification using characteristic isoquinoline alkaloid ultraviolet absorption spectra. Several isoquinoline alkaloid fractions (22–29) were further separated, and those of low resolution were isolated via two‐dimensional liquid chromatography in the orthogonal plane. A total of eight novel isoquinoline alkaloids with characteristic ultraviolet spectra were obtained from C. impatiens. We thus demonstrate the benefits of off‐line two‐dimensional strong cation exchange/reversed‐phase liquid chromatography to isolate isoquinoline alkaloids from C. impatiens.  相似文献   

6.
Ginsenosides have been widely conceded as having various biological activities and are considered to be the active ingredient of ginseng. Nowadays, preparative high‐performance liquid chromatography is considered to be a highly efficient method for ginseng saponins purification and preparation. However, in the process of practical application, due to the complex and varied composition of natural products and relatively simple pretreatment process, it is likely to block the chromatographic column and affect the separation efficiency and its service life. In this work, an orthogonal strategy was developed; in the first‐dimension separation, reverse‐phase macroporous resin was applied to remove impurities in ginseng crude extracts and classified ginseng extracts into protopanaxatriol and protopanaxadiol fractions. In the second‐dimension separation, the obtained fractions were further separated by a preparative hydrophilic column, and finally yielded 11 pure compounds. Eight of them identified as ginsenoside Rh1, Rg2, Rd, Rc, Rb2, Rb1, Rg1, and Re by standards comparison and electrospray ionization mass spectrometry. The purity of these ginsenosides was assessed by high‐performance liquid chromatography with UV detection.  相似文献   

7.
A 2‐D‐HPLC/CE method was developed to separate and characterize more in depth the phenolic fraction of olive oil samples. The method involves the use of semi‐preparative HPLC (C18 column 250×10 mm, 5 μm) as a first dimension of separation to isolate phenolic fractions from commercial extra‐virgin olive oils and CE coupled to TOF‐MS (CE‐TOF‐MS) as a second dimension, to analyze the composition of the isolated fractions. Using this method, a large number of compounds were tentatively identified, some of them by first time, based on the information concerning high mass accuracy and the isotopic pattern provided by TOF‐MS analyzer together with the chemical knowledge and the behavior of the compounds in HPLC and CE. From these results it can be concluded that 2‐D‐HPLC‐CE‐MS provides enough resolving power to separate hundreds of compounds from highly complex samples, such as olive oil. Furthermore, in this paper, the isolated phenolic fractions have been used for two specific applications: quantification of some components of extra‐virgin olive oil samples in terms of pure fractions, and in vitro studies of its anti‐carcinogenic capacity.  相似文献   

8.
Preparative parallel high performance liquid chromatography combined with solvent partition and other pretreatments were adopted to separate and purify compounds from an extract of Scutellaria barbata D. Don. Mass-triggered fraction collection allowed the rapid and precise isolation of target compounds. Twelve compounds were isolated from the extract of S. barbata D. Don, their purity in area percent was determined by HPLC analysis, and the structures of seven compounds were further identified with HPLC/ESI-MS, (1)H NMR, and( 13)C NMR, among which 4-(3,4-dihydroxy-phenyl)-but-3-en-2-one, acacetin-7-diglucuronide, and luteolin-7-diglucuronide were the first to be identified from this plant. The results demonstrated that multi-channel parallel preparative HPLC/UV/MS is an efficient method for isolation and purification of compounds from natural products.  相似文献   

9.
Purification of compounds from traditional Chinese medicines (TCMs) is an important task for understanding the chemical composition of TCMs. However, it is difficult to obtain compounds with high enough purity for identification by NMR due to the complexity of TCMs in chemical composition. In this study, a two‐dimensional purification method based on a Click oligo (ethylene glycol) column and a C18 column was developed to realize an orthogonal separation in preparative level for purifying compounds efficiently. The first dimensional preparation was performed on a Click oligo (ethylene glycol) column to simplify the sample into the fractions with good separation repeatability. On the first dimension, 7.2 g sample was separated into 11 fractions with a recovery of 86% within 6 h. A C18 column was taken as the second dimension to realize the high‐performance separation and rapid preparation from the fractions collected from the first dimension. Eight compounds in fraction 6 and 2 compounds in fraction 8 were isolated and identified after optimizing the separation and collection parameters. This method is a high‐efficient and orthogonal preparation method to improve the separation of a complex sample and increase the purity of the compounds, which benefits from the application of novel materials in the preparation and purification.  相似文献   

10.
An online high‐pH reversed‐phase liquid chromatography× low‐pH reversed‐phase liquid chromatography tandem electrospray ionization mass spectrometry combined with pulse elution gradient in the first dimension was constructed to separate and identify alkaloids from Macleaya cordata (willd.) R. Br. The modulation was performed by using a dual second dimensional columns interface combined with a make‐up dilution pump, which is responsible for dilution and neutralization of the first dimensional effluent, and the dual second dimensional columns integrated the trapping and the separation function to reduce the second dimension system dead volume. Taking advantage of the dissociable characteristics of alkaloids, mobile phases with different pH values were applied in the first dimension (pH 9.0) and the second dimension (pH 2.6) to improve the orthogonality of two‐dimension separation. Besides, the pulse elution gradient in first dimension and second dimensional gradient were carefully optimized and much better separation was achieved compared to the separation with the traditional two‐dimensional liquid chromatography approach. Finally, mass measurement was performed for alkaloids in M. cordata (willd.) R. Br. by coupling proposed two‐dimensional liquid chromatography system with triple quadrupole mass spectrometry, and 39 alkaloids were successfully identified by comparing the obtained result with the former reported results.  相似文献   

11.
Hollow fibre based liquid phase microextraction (HF-LPME) with high performance liquid chromatography (HPLC) was developed for the determination of alkaloids in Corydalis yanhusuo. Three alkaloids (protopine, tetrahydropalmatine, tetrahydroberberine) were extracted from a 10 mL alkaline sample (donor phase) to an organic phase impregnated in the pores of the hollow fibre, and then, they were extracted to an acidic solution (acceptor phase) in the lumen of the fibre. The extract was determined directly by HPLC. Parameters affecting the HF-LPME include the organic solvent, pH of the donor and the acceptor phase, the extraction time and the stirring speed were investigated systematically. To minimize the error of the injection, palmatine was added as an internal standard (I.S.). Under optimal conditions, calibration curves were obtained in the range of 0.1–1.0 mg L−1 with a reasonable linearity (r 2 > 0.993) and the limits of detection (LODs) ranged between 10.0 × 10−3 mg L−1 and 13.7 × 10−3 mg L−1. Additionally, enrichment factors with 100 to 184-fold were obtained. The method was then applied to the crude extract of Corydalis yanhusuo successfully.  相似文献   

12.
An efficient method for purification of alkaloids from Corydalis yanhusuo W. T. Wang using HPLC was developed, featuring a polar-copolymerized stationary phase named C18HCE. As ionizable solutes, the crude alkaloid sample often suffered from serious peak tailing problem on conventional RP-LC columns, and the separation would rapidly became destroyed with the increasing of load amount. However, on the new stationary phase, good peak shapes (asymmetry factor <1.5) as well as good loadability were easily obtained in a commonly used acidic mobile phase condition. The loading amount could reach 10 mg per injection on an analytical C18HCE column for laboratory-scale purification. About 6.8 mg of palmatine (HPLC purity >98%) and 44.4 mg of dehydrocorydaline (HPLC purity >98%) were rapidly derived from 200 mg of the crude alkaloid sample, and the recoveries of these two compounds were 76.5 and 81.7%, respectively. The purified alkaloids were characterized by comparing retention times with standard compounds as well as (1)H-NMR data. The new method is simple and high yielding, and it may provide a promising tool for purification of alkaloids as well as other alkaline compounds.  相似文献   

13.
An orthogonal (71.9%) off‐line preparative two‐dimensional normal‐phase liquid chromatography/reversed‐phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self‐made Click TE‐Cys (60 μm) solid‐phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE‐Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co‐eluted in the first dimension were selected for further purification using reversed‐phase liquid chromatography. Multiple compounds could be isolated from one normal‐phase fraction and some compounds with bad resolution in one‐dimensional liquid chromatography could be prepared in this two‐dimensional system owing to the orthogonal separation. Moreover, this two‐dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off‐line two‐dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice.  相似文献   

14.
An automated packed-column semi-preparative supercritical fluid chromatography/mass spectrometry (SFC/MS) system incorporating mass-directed fraction collection has been designed and implemented as an alternative to preparative HPLC and preparative HPLC/MS (PrepLC/MS) for the purification of pharmaceutical compounds. The system incorporates a single quadrupole mass spectrometer and a supercritical fluid chromatograph. Separations were achieved using a binary solvent system consisting of carbon dioxide and methanol. Purification of SFC-separated compounds was achieved incorporating mass-directed fraction collection, enabling selective isolation of the target molecular weight compound and eliminating the collection of undesired compounds (e.g., by-products, excess starting materials, etc.). Cross contamination between fractions and recoveries of the system were investigated. Mass spectrometer ionization with basic mobile additives is discussed, and examples of preparative SFC/MS chiral separations are presented. Early experiences suggest SFC will be a powerful and complementary technique to HPLC for the purification of pharmaceutical compounds.  相似文献   

15.
A four‐channel preparative HPLC was employed to isolate and purify compounds from licorice extract. Two separation modes, RP and hydrophilic interaction LC (HILIC), were used in preparative HPLC. HILIC mode was adopted to resolve the purification of the compounds with similar hydrophobicity, which were co‐eluted under RP mode. Using the two separation modes during the purification process, fifteen compounds were isolated from licorice extract. The results indicated that preparative HPLC performed under HILIC mode is an efficient method for the isolation and purification of compounds from natural products.  相似文献   

16.
This article proposes a solvent system screening strategy for compounds with similar UV absorption in complex samples by UV spectrophotometer. There is no need to calculate the partition coefficient value of each compound, only the partition coefficient of the whole sample. The partition coefficient value should be close to 1 in order to obtain as many high-speed counter-current chromatography fractions as possible. Then, preparative HPLC was used to purify the high-speed counter-current chromatography fractions. Based on the above strategy, seven c-glycosyl flavonoids and an amino acid were successfully obtained from barley seedlings through high-speed counter-current chromatography fractionation with ethyl acetate/n-butanol/water (8:2:10, v:v:v) system followed by preparative HPLC purification. The research shows that high-speed counter-current chromatography could be well developed as a tool for fractionation before purification, and greatly improves the separation efficiency.  相似文献   

17.
The presence of metal-binding biomolecules has been studied in Chamelea gallina, a bioindicator used for environmental contamination monitoring and very popular for human consumption in the Atlantic southwest coast of Spain. This area is affected by metal pollution from mining activities, which can modify biomolecules expression in this bivalve. Total content of elements was determined by ICP-MS and revealed a remarked presence of Fe, Zn, Cu, As and Mn. A metallomics approach has been optimised for this mollusc using size-exclusion chromatography on column Superdex 30?pg HiLoad 26/60 with in series UV and ICP-MS detection. At least four fractions with molecular weight in the range 1540 to 415 Da were observed with UV detection, but the ICP-MS chromatogram showed the presence of metals of interest only in the first two fractions. The apparent molecular weights of these metal-containing fractions were from 1325 to 764 Da. The fractions containing metals compounds were collected and lyophilised for further purification of reconstituted extracts with a second orthogonal chromatographic separation using reverse phase (RP) HPLC with ICP-MS detection. Several peaks were obtained in this second dimension separation which allows the isolation of As-, Cu- and Zn-containing biomolecules.  相似文献   

18.
Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) is an effective technique for analysis of complex samples with offering rapid, efficient separation in combination with accurate mass measurement and tandem mass spectrometry (MS/MS). This paper exploits this technique to identify the alkaloids in corydalis yanhusuo, an important antalgic Traditional Chinese Medicine (TCM). The mass spectral fragmentation behavior of one tertiary alkaloid and two quaternary alkaloids was studied in detail. Low-abundance product ions of tertiary and quaternary alkaloids were investigated and compared between each other. Sixteen alkaloids were screened out by using a systematic screening method developed in our laboratory; structures of eight therein were identified by characteristic UV absorption spectrum and positive ion mode of Q-TOF-MS/MS; and two of them were discovered for the first time in corydalis yanhusuo to our knowledge. This research demonstrates the potential of UPLC-Q-TOF-MS in structural characterization and identification of components in traditional Chinese herbal medicines.  相似文献   

19.
Two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography (2D-RPLC/HILIC) system was successfully applied for comprehensive characterization of steviol glycosides from Stevia rebaudiana. The experiments were performed in offline mode using an XCharge C18 column in first dimension and an XAmide column in second dimension. In first dimension, preliminary separation of Stevia aqueous extract was accomplished and 30 fractions were collected. Then fractions 1-20 were selected for further purification and 13 compounds with high purity were obtained in second dimension. Comprehensive characterization of these compounds was completed by determination of their retention time, accurate molecular weight, diagnostic fragmentation ions, and nuclear magnetic resonance spectroscopy. As a result, all nine known steviol glycosides, as well as other four steviol glycosides were fully purified. The result demonstrated that this procedure is an effective approach for the preparative separation and comprehensive characterization of steviol glycosides in Stevia. This 2D-RPLC/HILIC method will be a promising tool for the purification of low-abundance compounds from natural products.  相似文献   

20.
Corydalis yanhusuo extract (YHS) has been used for centuries across Asia for pain relief. The extract is made up of more than 160 compounds and has been identified as alkaloids, organic acids, volatile oils, amino acids, alcohols, and sugars. However, the most crucial biological active constituents of YHS are alkaloids; more than 80 have been isolated and identified. This review paper aims to provide a comprehensive review of the phytochemical and pharmacological effects of these alkaloids that have significant ties to analgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号