首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new halogenated sesquiterpenes, (8β)‐10‐bromo‐3‐chloro‐2,7‐epoxychamigr‐9‐en‐8‐ol ( 1 ) and 2‐bromo‐3‐chlorobisabola‐7(14),11‐diene‐6,10‐diol ( 3 ), and one new phytol‐derived diterpene, 2,3‐epoxyphytyl acetate ( 4 ), along with cis‐ and trans‐1‐methylcyclohexane‐1,4‐diol ( 5 and 6 ) which were isolated from a natural source for the first time but have been previously synthesized, were isolated from the marine red alga Laurencia composita and characterized. In addition, a known sesquiterpene, pacifenediol ( 2 ), and the known furanone derivative 7 were also identified. Their structures were established by NMR and mass spectroscopic methods.  相似文献   

2.
Six new cadinane‐type sesquiterpenes, (1β,4β,5α,10α)‐1,4‐epoxymuurolan‐5‐ol ( 1 ), (4α,10β)‐4,10‐dihydroxycadin‐1(6)‐en‐5‐one ( 2 ), (2β,3α,4β,6β)‐2,3‐dihydroxycadin‐1(10)‐en‐5‐one ( 3 ), (2β,3α)‐α‐corocalene‐2,3‐diol ( 4 ), (7S)‐α‐calacoren‐14‐ol ( 5 ), and (8β,9β,10β)‐8,9‐epoxycalamenene‐3,10‐diol ( 6 ) together with one known compound, (8β,9β,10β)‐8,9‐epoxycalamenen‐10‐ol ( 7 ), were isolated from the roots of Taiwania cryptomerioides. The structures of the new constituents were essentially elucidated by spectral evidence.  相似文献   

3.
Seven new compounds were isolated from the roots of Ligularia dentata, including five bisabolane‐type sesquiterpenoids (bisabolane=1‐(1,5‐dimethylhexyl)‐4‐methylcyclohexane), namely (8β,10α)‐8‐(angeloyloxy)‐5,10‐epoxybisabola‐1,3,5,7(14)‐tetraene‐2,4,11‐triol ( 1 ), (8β,10α)‐8‐(angeloyloxy)‐5,10‐epoxythiazolo[5,4‐a]bisabola‐1,3,5,7(14)‐tetraene‐4,11‐diol ( 2 ), (1α,2α,3β,5α,6β)‐1,5,8‐tris(angeloyloxy)‐10,11‐epoxy‐2,3‐dihydroxybisabol‐7(14)‐en‐4‐one ( 3 ), (1α,2α,3β,5α,6β)‐2,5,8‐tris(angeloyloxy)‐10,11‐epoxy‐1,3‐dihydroxybisabol‐7(14)‐en‐4‐one ( 4 ), and (1α,2β,3β,5α,6β)‐1,8‐bis(angeloyloxy)‐2,3‐epoxy‐5,10‐dihydroxy‐11‐methoxybisabol‐7(14)‐en‐4‐one ( 5 ) (angeloyloxy=[(2Z)‐2‐methyl‐1‐oxobut‐2‐enyl]oxy), and two lactone derivatives, (2α,3β,5α)‐2‐(acetyloxy)‐9‐methoxy‐5‐(methoxycarbonyl)‐2,3‐dimethylheptano‐5‐lactone ( 6 ), and (2β,4β)‐2‐ethyl‐5‐hydroxy‐5‐(methoxycarbonyl)‐4,5‐dimethylpentano‐4‐lactone ( 7 ) (α/β denote relative configurations), together with (2E,4R,5S)‐2‐ethylidene‐5‐(methoxycarbonyl)‐4‐methylhexano‐5‐lactone ( 8 ), a known synthetic compound. Compound 2 is the first sesquiterpenoid derivative containing the uncommon benzothiazole moiety. The structures of 1 – 8 were established by spectroscopic methods, especially 2D‐NMR and MS analyses.  相似文献   

4.
Seven new and three known bisresorcinols, grevirobstol A (=5,5′‐((6Z,9Z)‐hexadeca‐6,9‐diene‐1,16‐diyl)bisresorcinol; 8 ), 5,5′‐[(8Z)‐hexadec‐8‐ene‐1,16‐diyl]bisresorcinol ( 9 ), and 2‐methyl‐5,5′‐[8Z)‐hexadec‐8‐ene‐1,16‐diyl]bisresorcinol ( 10 ) were isolated from the stems of Grevillea glauca. The new compounds were identified on the basis of spectroscopic data as (Z)‐6,7‐didehydroglaucone A ( 1 ), glaucones A and B ( 2 and 3 , resp.), 2‐(3‐hydroxyisopentyl)bisnorstriatol ( 4 ), 2‐(3‐methylbut‐2‐en‐1‐yl)bisnorstriatol ( 5 ), 2′‐methylgrebustol A ( 6 ), and glaucane ( 7 ).  相似文献   

5.
Three new halogenated chamigrane sesquiterpenes, laurokamin A (1), laurokamin B (2), and laurokamin C (3), and four known halogenated chamigrane sesquiterpenes, 10‐bromo‐α‐chamigrene (4), 10‐bromo‐β‐chamigrene (5), 2,10‐dibromo‐3‐chloro‐β‐chamigrene (6), and obtusane (7), were isolated from the marine red alga Laurencia okamurae collected from the coast of Rongcheng, China. The structures of these compounds were unambiguously identified by one‐ and two‐dimensional NMR and mass spectroscopic methods. The antimicrobial activity of compounds 1–3 was evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The phytochemical investigation of Xylopia langsdorffiana A.St.‐Hil. & Tul . led to the isolation of eight diterpenes, i.e., of the four new compounds (5β,7β,8α,9β,10α,12α)‐atisane‐7,16‐diol 7‐acetate ( 1 ), named xylodiol 7‐acetate, (5β,8α,9β,10α,12α)‐16‐hydroxyatisan‐7‐one ( 2 ), named xylopinone, (3α,12Z)‐3‐hydroxy‐ent‐labda‐8(20),12,14‐trien‐18‐oic acid ( 3 ), named labdorffianic acid A, and 8,20‐epoxy‐13‐hydroxy‐ent‐labd‐14‐en‐18‐oic acid ( 4 ), named labdorffianic acid B, and of the four known compounds 5 – 8 , i.e., ent‐kauran‐16‐ol, ent‐kaur‐16‐en‐19‐oic acid, ent‐kaur‐16‐en‐19‐ol, and ent‐trachyloban‐18‐oic acid. The structures were established by IR, HR‐ESI‐MS, and NMR data analysis with the aid of 2D techniques.  相似文献   

7.
Chemical examination of the AcOEt extract of the leaves and twigs of Excoecaria cochinchinensis Lour . collected from Xishuangbanna resulted in the isolation of the three new highly oxygenated diterpenoids 1 – 3 . The structures of the new diterpenoids were elucidated by a study of their physical and spectra data as (2β,3β,5α,6α)‐2,3‐bis(acetyloxy)‐8,13‐epoxy‐6,9‐dihydroxylabd‐14‐en‐11‐one (=excolabdone A; 1 ), (1α,5α,6β,7β)‐1,6‐bis(acetyloxy)‐8,13‐epoxy‐7,9‐dihydroxylabd‐14‐en‐11‐one (=excolabdone B; 2 ), and (1α,5α,6β,7β)‐6‐(acetyloxy)‐8,13‐epoxy‐1,7,9‐trihydroxylabd‐14‐en‐11‐one (=excolabdone C; 3 ).  相似文献   

8.
Four new eudesmane‐type sesquiterpene derivatives, 3β‐[(β‐D ‐glucopyranosyl)oxy]‐11αH‐eudesm‐4(14)‐en‐12,8β‐olide ( 1 ), (3β)‐eudesma‐4(14),11(13)‐diene‐3,12‐diol ( 2 ), 3β‐[(β‐D ‐glucopyranosyl)oxy]eudesma‐4(14),11(13)‐dien‐12‐ol ( 3 ), and 3β‐[(β‐D ‐glucopyranosyl)oxy]eudesm‐4(14)‐en‐11‐ol ( 4 ), together with the known (3β)‐eudesm‐4(14)‐ene‐3,11‐diol ( 5 ) were isolated from Saussurea conica, and their structures were elucidated both spectroscopically and by chemical methods.  相似文献   

9.
Four new ent‐pimarane diterpenes were isolated from the EtOH extract of Aralia dumetorum, together with three known compounds involving ent‐pimar‐8(14),15‐dien‐19‐oic acid ( 5 ), ent‐pimar‐8(14),15‐dien‐19‐ol ( 6 ), and ent‐kaur‐16‐en‐19‐oic acid ( 7 ). By detailed analyses of the MS, IR, and NMR data, the structures of four new diterpenes were characterized as (5β,9β,10α,13α)‐pimara‐6,8(14),15‐trien‐18‐oic acid ( 1 ), (5β,7β,9β,10α,13α)‐7‐methoxypimara‐8(14),15‐dien‐18‐oic acid ( 2 ), (5β,9β,10α,13α,14β)‐14‐methoxypimara‐7,15‐dien‐18‐oic acid ( 3 ), and (5β,10α,13α,14α)‐14‐hydroxypimara‐7,9(11),15‐trien‐18‐oic acid ( 4 ). The cytotoxic activities of compounds 1  –  7 were assayed in vitro through MTT method.  相似文献   

10.
Two new natural taxanes were isolated from the heartwood of Taxus cuspidata. The structures were established as rel‐(2α,5α,7β,9α,10β,12α)‐7,9‐bis(acetyloxy)‐2‐(benzoyloxy)‐11,12‐epoxy‐1,5‐dihydroxy‐10‐[(hydroxyacetyl)oxy]tax‐4(20)‐en‐13‐one ( 1 ), and (2α,5α,10β,14β)‐taxa‐4(20),11‐diene‐2,5,10,14‐tetrol 2‐acetate ( 2 ) on the basis of spectroscopic analysis.  相似文献   

11.
A minor, unprecedented diterpene, 3β,17‐dihydroxycleistantha‐12,15‐dien‐2‐one ( 1 ), was isolated from the CHCl3‐soluble part of the EtOH extract of the pericarp of Trewia nudiflora. The structure of 1 was elucidated by means of 1D‐ and 2D‐NMR spectroscopic analyses as well as by HR‐MS. Also isolated were two known triterpenes, glutin‐5‐en‐3‐ol and olean‐18‐en‐3‐one (germanicone), as well as three known sterols, (22E,24R)‐5α,8α‐epidioxyergosta‐6,22‐dien‐3β‐ol, (22E,24R)‐5α,8α‐epidioxyergosta‐6,9(11),22‐trien‐3β‐ol, and (22E,24R)‐6‐methoxyergosta‐7,22‐dien‐3,5‐diol.  相似文献   

12.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

13.
The course of the singlet‐oxygen reaction with pregn‐17(20)‐enes and pregn‐5,17(20)‐dienes was studied to compare the reactivity of the two alkene moieties present in some steroid families. Thus, from commercially available (3β,5α)‐hydroxy‐androstan‐17‐one and (3β)‐3‐hydroxyandrost‐5‐en‐17‐one, the following 3‐{[(tert‐butyl)dimethylsilyl]oxy}‐substituted, 17(20)‐unsaturated pregnanes were prepared (see Fig. 1): (3β,5α)‐21‐norpregn‐17(20)‐ene 1 ; (3β,5α,17Z)‐pregn‐17(20)‐ene 2 , (3β,5α,16α,17E)‐pregn‐17(20)‐en‐16‐ol 3 , (16β,5α,17E)‐pregn‐17(20)‐en‐16‐ol 4 , (3β,5α,16β,17E)‐pregn‐17(20)‐en‐16‐ol acetate 5 , (3β,16α)‐21‐norpregna‐5,17(20)‐dien‐16‐ol 6 , (3β,16α,17E)‐pregna‐5,17(20)‐dien‐16‐ol 7 , (3β,17Z)‐pregna‐5,17(20)‐diene 8 , (3β,17E)‐pregna‐5,17(20)‐dien‐21‐ol 9 and (3β,17E)‐5,17(20)‐dien‐21‐ol acetate 10 . The oxygenated products (see Fig. 2) obtained from 1 – 10 and 1O2, generated by irradiation of Rose Bengal in 3O2‐saturated pyridine solution, were characterized by 1H‐, 13C‐NMR, and MS (EI, FAB, HR‐EI, ESI‐ and UV‐MALDI‐TOF) data. Major products were those formed by the ene reaction involving as intermediates the corresponding hydroperoxides and the cyclic tautomers of the allylic hydroperoxides, i.e., the corresponding oxiranium oxide‐like intermediate (Scheme 5).  相似文献   

14.
A new sterol, 5α,6α‐epoxy‐3β‐hydroxy‐(22E,24R)‐ergosta‐8,22‐dien‐7‐one ( 1 ), together with eight known sterols, 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8,22‐diene‐3β,7α‐diol ( 2 ), 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8,22‐diene‐3β,7β‐diol ( 3 ), 5α,6α‐epoxy‐(22E,24R)‐ergosta‐8(14),22‐diene‐3β,7α‐diol ( 4 ), 3β‐hydroxy‐(22E,24R)‐ergosta‐5,8,22‐trien‐7‐one ( 5 ), ergosterol peroxide ( 6 ), clerosterol ( 7 ), decortinol ( 8 ), and decortinone ( 9 ), were isolated from the stems of Momordica charantia. Their structures were elucidated by mean of extensive spectroscopic methods, including 1H, 13C, 2D‐NMR and HR‐EI‐MS, as well as comparison with the literature data. Compounds 1 , 4 , 5 , 8 , and 91 were not cytotoxic against the SK‐Hep 1 cell line.  相似文献   

15.
Two new withanolides, namely (20S,22R)‐15α‐acetoxy‐5α‐chloro‐6β,14β‐dihydroxy‐1‐oxowitha‐2,24‐dienolide ( 1 ) and (22R)‐5β,6β : 14α,17 : 14β,26‐triepoxy‐2α‐ethoxy‐13,20,22‐trihydroxy‐1,15‐dioxo‐16α,24‐cyclo‐13,14‐secoergosta‐18,27‐dioic acid 18→20,27→22‐dilactone ( 2 ), along with six known compounds, physagulin B ( 3 ), withangulatin A ( 4 ), physalin I ( 5 ), withaminimin ( 6 ), physagulin J ( 7 ), and ergosta‐5,25‐diene‐3β,24ξ‐diol ( 8 ), were isolated from the whole plant of Physalis alkekengi var. francheti. Their structures were elucidated on the basis of spectroscopic analyses.  相似文献   

16.
Two new eremophilane‐type sesquiterpenoids eremophil‐6‐en‐11‐ol ( 1 ) and (7α,9α,10α)‐9,10‐epoxy‐eremophilan‐11‐ol ( 2 ), together with a known eremophilane‐type (6α,8α)‐6,8‐dihydroxyeremophil‐7(11)‐en‐12‐oic acid 12,8‐lactone ( 3 ) were isolated from the rhizomes of Ligularia veitchiana. The structures of 1 and 2 were established by spectral analysis including 1H‐ and 13C‐NMR, HSQC, HMBC, and HR‐ESI‐MS data. The compounds 1 and 3 were assessed against lung‐cancer (A549) and stomach‐cancer (BCG823) cell lines by the MTT method. The results showed that 1 exhibited significant inhibiting activities on the growth of these cancer cells with IC50 values between 1–100 μg/ml, whereas compound 3 had no effect on the same cell lines.  相似文献   

17.
Eight new terpenoids ( 1 – 8 ) were isolated from the bark of Jatropha neopauciflora, together with eight known compounds. The new isolates include the sesquiterpenoids (1R,2R)‐diacetoxycycloax‐4(15)‐ene ( 1 ); (1R,2R)‐dihydroxycycloax‐4(15)‐ene ( 2 ), (2R)‐δ‐cadin‐4‐ene‐2,10‐diol ( 3 ), (2R)‐δ‐cadina‐4,9‐dien‐2‐ol ( 4 ), (1R,2R)‐dihydroxyisodauc‐4‐en‐14‐ol ( 5 ) and its acetonide 6 (artifact), as well as the two triterpenoids (3β,16β)‐16‐hydroxylup‐20(29)‐en‐3‐yl (E)‐3‐(4‐hydroxyphenyl)prop‐2‐enoate ( 7 ) and (3β,16β)‐16‐hydroxyolean‐18‐en‐3‐yl (E)‐3‐(4‐hydroxyphenyl)prop‐2‐enoate ( 8 ). The structures of these compounds were established by extensive 1D‐ and 2D‐NMR spectroscopic methods, and their absolute configurations were determined by circular‐dichroism (CD) experiments, and by X‐ray crystallographic analysis (compound 7 ; Fig. 3). A plausible biosynthesis of the sesquiterpenoids 1 – 5 is proposed (Scheme), starting from (?)‐germacrene D as the common biogenetic precursor.  相似文献   

18.
2‐Amino substituted 7H‐1,3,4‐thiadiazolo[3,2‐α]pyrimidin‐7‐ones 11a‐e were prepared by the reaction of 2‐bromo‐5‐amino‐1,3,4‐thiadiazole ( 1b ) and diketene ( 8 ), subsequent cyclocondensation ( 9b → 3b ) and displacement of the bromo substituents by the reaction with primary or secondary amines ( 3b → 11a‐e ). The hydrogen atom 6‐H in the heterobicycle 3b is replaced by a Cl or Br atom in the transformation of 3b → 14a,b. The 2‐bromo‐6‐chloro compound 14a reacts chemoselectively in the 2‐position with dimethylamine ( 14a → 15 ). The structure elucidations are based on one‐ and two‐dimensional NMR techniques including a heteronuclear NOE measurement.  相似文献   

19.
Two new terpenoids, the bisnorditerpene rel‐(5β,8α,10α)‐8‐hydroxy‐13‐methylpodocarpa‐9(11),13‐diene‐3,12‐dione ( 1 ) and the guaiane sesquiterpene rel‐(1R,4S,6R,7S,8aR)‐decahydro‐1‐(hydroxymethyl)‐4,9,9‐trimethyl‐4,7‐(epoxymethano)azulen‐6‐ol ( 2 ), together with seven known compounds, were isolated from Croton regelianus var. matosii. The structures of the isolated compounds were determined by HR‐ESI‐TOF and a combination of 1D‐ and 2D‐NMR experiments.  相似文献   

20.
Six new lanostane triterpenes, artabotryols A, B, C1, C2, D, and E ( 1, 2, 3a, 3b, 4 , and 5 , resp.) have been isolated from the seeds of Artabotrys odoratissimus (Annonaceae). Their structures have been established as (3α,22S,25R)‐3‐hydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 1 ), (3α,22S,25R)‐22,26‐epoxylanost‐8‐ene‐3,26‐diol ( 2 ), (3α,22S,25R,26R)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3a ), (3α,22S,25R, 26S)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3b ), (3α,22S,25R)‐3,22‐dihydroxylanost‐8‐en‐26‐oic acid ( 4 ) and (3α,7α,11α,22S,25R)‐3,7,11‐trihydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 5 ) by spectroscopic studies and chemical correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号