首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The present paper reports the achievement of the rotating-frame analog of spin-locking and its application to the precise measurements of the spin-lattice relaxation time T(1DR) in the doubly rotating frame. After the magnetization is aligned along the resonant RF field H(1), a pulse sequence of a low-frequency oscillating magnetic field at exact resonance is applied perpendicular to H(1). We have overcome several technical difficulties arising from the fact that the rotating-wave approximation is not valid for the low-frequency field. We have theoretically derived an expression of T(-1)(1DR) due to fluctuating magnetic dipole interactions in the weak collision case and found an important relation among the spin-lattice relaxation rates T(-1)(1), T(-1)(1rho), and T(-1)(1DR). This relation can be used to ascertain whether the relaxation is only due to the fluctuating magnetic dipole interactions between like spins. The experiment was carried out on (1)H nuclei in tetramethylammonium iodide (CH(3))(4)NI and the temperature dependence of T(-1)(1DR) was measured together with that of T(-1)(1) and T(-1)(1rho). The activation energies and the preexponential factors of Arrhenius expressions of the correlation times are newly determined.  相似文献   

2.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

3.
Spin-lattice NMR relaxation times T1 in the laboratory frame and T1rho(off) as well as T1rho(off) in the rotating frame off-resonance were employed to the study of molecular dynamics of both pristine PPS and thermally treated poly(p-phenylene sulfide) (PPS). The temperature dependence of T1 was exponential in the whole temperature range studied, whereas T1rho only in low temperatures. In the high temperature range the distribution of relaxation times T1rho and correlation times tau(c) as well as activation energy Ea was observed. The distribution of activation energy determined from T1 minima at 15 and 30 MHz and from low temperature slopes of T1rho dependence as well as from spectral density functions (estimated from proton off-resonance technique) was attributed to the reorientation of phenylene groups around the sulfur-phenyl-sulfur axis in amorphous and crystalline phases of PPS. Furthermore, it is suggested that an additional relaxation mechanism related to interactions of protons with paramagnetic centers is operative in a low temperature range. After thermal treatment of PPS the low temperature minima disappeared and the relaxation times shortened in the low temperature regime. Both these facts were attributed to an increased contribution of spin diffusion in the relaxation process.  相似文献   

4.
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)相似文献   

5.
The spin dynamics of NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg (FSLG) pulse sequence is investigated for a better understanding of the line-narrowing mechanism in PISEMA experiments. For the sample of oriented 15N(1,3,5,7)-labeled gramicidin A in hydrated DMPC bilayers, it is found that the spin-lattice relaxation time T(1rho)(H) in the tilted rotating frame is about five times shorter when the 1H magnetization is spin locked at the magic angle by the FSLG sequence compared to the simple Lee-Goldburg sequence. It is believed that the rapid phase alternation of the effective fields during the FSLG cycles results in averaging of the spin lock field so that the spin lock becomes less efficient. A FSLG supercycle has been suggested here to slow the phase alternation. It has been demonstrated experimentally that a modified PISEMA pulse sequence with such supercycles gives rise to about 30% line narrowing in the dipolar dimension in the PISEMA spectra compared to a standard PISEMA pulse sequence.  相似文献   

6.
In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1rho. On the other hand, the time constant T2rho characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2rho can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2rho characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2rho relaxation in the fast-exchange regime, with time constant defined as T2rho,ex. The derived theory predicts the rate constant R2rho,ex (= 1/T2rho,ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2rho,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems.  相似文献   

7.
Two-pulse electron spin echo (ESE) measurements of the phase relaxation (phase memory time T(M)) were performed in a series of Tutton salt crystals M(I)(2)M(II)(SO(4))(2).6X(2)O (M(I)=NH(4), K, Cs; M(II)=Zn, Mg; X=H, D) weakly doped with Cu(2+) ions (c approximately equal to 10(18) ions/cm(3)) in temperature range 4-60 K where ESE signals were detectable. The ESE decay was strongly modulated with proton (or deuteron) frequencies and described by the decay function V(2tau)=V(0)exp(-btau-mtau(2)) with the mtau(2) term being temperature independent and negligible above 20 K. Various mechanisms leading to the tau- or tau(2)-type ESE decay are reviewed. The m and b coefficients for nuclear spectral diffusion (NSD), electron spectral diffusion (SD), and instantaneous diffusion (ID) were calculated in terms of existing theories and the resulting rigid lattice T(0)(M) times were found to be close one to another within the crystal family with average values: 17.5 micros (NSD protons), 200 micros (NSD deuterons), 8 micros (SD), and 5 micros (ID). The ID dominates but the calculated effective T(M)(0) is longer than the experimental T(M)(0)=2 micros. This is due to a nonuniform distribution of the Cu(2+) ions with a various degree of the disorder in the studied crystals. The acceleration of the dephasing rate 1/T(M) with temperature is due to the mechanisms producing exp(-btau) decay. They are reviewed and two of them were found to be operative in Tutton salt crystals: (a) Excitations to the vibronic levels of energy Delta leading to the temperature dependence 1/T(M)=B exp(-Delta/kT), with the vibronic levels produced by strong Jahn-Teller effect, and (b) spin-lattice relaxation processes being effective above 50 K. Based on the Delta values being on the order of 100 cm(-1), the scheme of vibronic levels in the Tutton salts is presented, and the independence of the Delta on temperature proves that the adiabatic potential surface shape of Jahn-Teller active Cu(H(2)O)(6) complexes is not affected by temperature below 65 K.  相似文献   

8.
Phosphorus-31 spin-lattice relaxation, both in the laboratory (B(0)=4.7 T) and rotating frame (B(1)=2.2 mT), was studied in the following samples: mineral of whole human bone (samples B1-B6), apatite prepared from bone (BHA), natural brushite (BRU), synthetic hydroxyapatite hydrated (HAh) and calcined (HAc), and synthetic carbonatoapatite of type B (CHA-B) with 9 wt% of CO(3)(2-). The T(1)(P) relaxation time was determined directly using the saturation recovery technique, while the T(1 rho)(P) relaxation time was measured via (1)H-->(31)P CP by incrementing the (31)P spin-lock. In order to avoid an effect of magic-angle spinning (MAS) on CP and relaxation, the experiments were carried out on static samples. The (31)P spin-lattice relaxation was discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. None of the reference materials has matched accurately the relaxation behaviour of the bone mineral. The most striking differences between the examined substances were observed for T(1)(P), which for human bone was sample dependent and appeared in the range 55-100 s, while for HAh, HAc, and CHA-B was 7.2, 10.0, and 25.8 s, respectively. Possible reasons of so large relaxation diversity were discussed. It has been suggested that T(1)(P) of apatites is to some extent dependent on the concentration of the structural hydroxyl groups, and this in turn is controlled by the material crystallinity. It was also found that T(1)(P) decreased on hydration by ca. 30%. For T(1rho)(P), both its magnitude and dependence on the CP contact time gave useful structural information. The dehydrated samples (HAc and BHA) had long T(1 rho)(P) over 250 ms. Those, which contained water, either structural (BRU) or adsorbed on the crystal surface (HAh, CHA-B, and B1-B6), had shorter T(1 rho)(P) below 120 ms. It was concluded that the effect of water on T(1 rho)(P) is much more pronounced than on T(1)(P). The interpretation has involved P-OH groups and adsorbed water, which cover the apatite crystal surface.  相似文献   

9.
NMR imaging by radio-frequency field gradients (B1 gradients) is especially convenient for heterogeneous samples and/or in the case of relatively short transverse relaxation times. The method has been combined with the application of two spin-lock periods of different duration so as to produce rotating-frame spin-lattice relaxation time (T1rho) images. In the case of natural rubber samples with different crosslink densities, such images are not only characteristic of the crosslink density but also reveal the way in which the material has been stressed. The strained parts can be visualized either directly or through histograms showing the T1rho distribution over the whole sample.  相似文献   

10.
The lower critical field H(c1) for highly underdoped YBa2Cu3O(6+x) with T(c) between 8.9 and 22 K has been determined by measurements of magnetization M(H) curves with applied field parallel to the c axis. H(c1) is linear in temperatures below about 0.6T(c), and H(c1)(0) is proportional to T(1.64+/-0.04)(c), clearly violating the proportionality between rho(s)(0) and T(c). Moreover, the slope -dH(c1)/dT decreases steeply toward zero as T(c) approaches zero, indicating that the effective charge of the quasiparticles vanishes as the doping is decreased toward the insulating phase.  相似文献   

11.
(1)H nuclear spin-lattice relaxation has been investigated in sodium acetate trihydrate and sorbic acid using field-cycling NMR in the solid state. The relaxation is dominated by the reorientation of the methyl groups. Resonant features arising from coherent tunnelling are observed in both the magnetic field dependence of the spin lattice relaxation rate, T(1)(-1)(B(z)) and in the inverse temperature dependence, T(1)(-1)(1/T). The two systems have different barrier heights and tunnelling frequencies, providing different perspectives on the tunnel resonance phenomena. The magnetic field dependence enables different spectral density components to be separately investigated and in the carboxylic acid, sorbic acid, concerted proton transfer in the hydrogen bonds is also identified at low field and low temperature. The methyl hindering barriers and the correlation times characterising the reorientational dynamics has been accurately determined in both materials.  相似文献   

12.
In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T(1)) and echo phase relaxation time (T(2)(echo)) near the optimal operating point of a flux qubit. We have measured T(2)(echo) by means of the phase cycling method. At the optimal point, we found the relation T(2)(echo) approximately 2T(1). This means that the echo decay time is limited by the energy relaxation (T(1) process). Moving away from the optimal point, we observe a linear increase of the phase relaxation rate (1/T(2)(echo)) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f spectrum on the qubit.  相似文献   

13.
The interlayer magnetoresistance rho(zz) of the organic metal kappa-(BEDT-TTF)(2)Cu(NCS)(2) is studied in fields of up to 45 T and at temperatures T from 0.5 to 30 K. The peak in rho(zz) seen in in-plane fields, a definitive signature of interlayer coherence, remains to Ts exceeding the Anderson criterion for incoherent transport by a factor approximately 30. Angle-dependent magnetoresistance oscillations are modeled using an approach based on field-induced quasiparticle paths on a 3D Fermi surface, to yield the T dependence of the scattering rate tau(-1). The results suggest that tau(-1) does not vary strongly over the Fermi surface, and that it has a T(2) dependence due to electron-electron scattering.  相似文献   

14.
Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields (B0 > 3T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude omega(1) and pulse duration tau. The choices of omega(1) and tau are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle theta and off-resonance pulse duration tau. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R(1rho)/R1, the ratio of the off-resonance rotating frame relaxation rate constant R(1rho) verse the laboratory frame relaxation rate constant R(1), three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time tauR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.  相似文献   

15.
The 300 MHz (7 T) water proton resonances of suspensions of red blood cells containing paramagnetic deoxyhemoglobin or methemoglobin can be resolved into two broad lines assignable to intra- and extracellular water which undergoes rapid T2 relaxation by diffusion in magnetic field gradients induced by the intracellular paramagnets. The width of the resolved lines allowed an estimate of the maximum contribution that diffusion makes to T2 relaxation at 7 T. The dependence of the diffusion contribution on the square of the strength of the static magnetic field suggest that diffusion makes a small contribution to water proton T2 relaxation at 1.5 T compared to 7 T, and a negligible one at 0.5 T in early and intermediate hematomas containing deoxyhemoglobin or methemoglobin in intact red blood cells. At the lower field strengths, water proton T2 relaxation is apparently dominated by the rapid chemical exchange (mean lifetime tau = 10 msec) between the intra- and extracellular environments.  相似文献   

16.
The relaxation in protein solutions has mainly been studied by nuclear magnetic relaxation dispersion (NMRD) techniques. NMRD data have mostly been analyzed in terms of fast chemical exchange of water between free water and water bound to proteins. Several approaches were used for the estimation of correlation time modulating the relaxation mechanism of bound water. On the other hand, in a nuclear magnetic resonance experiment, the relaxation rates of protein solutions (1/T1 and 1/T2) and also those of free water (1/T1f and 1/T2f) are measurable. However, the relaxation rates of bound water (1/T1b and 1/T2b) are not. Despite this, equating (1/T1-1/T1f)/2(1/T2-1/T2f) to (1/T1b)/2(1/T2b) leads to an expression involving only an effective tau that is related to the rotational correlation time (tau r) of proteins. Equating the ratios may therefore give a simple alternative method for the determination of tau r even if this method is limited to a single resonance frequency. In this work, a formula was derived for the solution of the effective tau. Then, the 1/T1 and 1/T2 in solutions of two globular proteins (lysozyme and albumin) and one nonglobular protein (gamma-globulin) were measured for different amounts of each protein. Next, the values of 1/T1 and 1/T2 were plotted vs. protein concentrations, and then the slopes of the fits were used in the derived equation for determining the effective tau values. Finally, the rotational correlation time tau r, calculated from tau, was used in the Stokes-Einstein relation to reproduce relevant radii. The effective tau values of lysozyme, albumin and gamma-globulin were found to be 5.89 ns, 7.03 ns and 8.8 ns, respectively. tau r values of albumin and lysozyme produce their Stokes radii. The present data suggest that use of the measurable ratio in the derived formula may give a simple way for the determination of the correlation times of lysozyme and albumin.  相似文献   

17.
Using proton NMR relaxometry in the kilohertz frequency range, we study dynamics of 5CB liquid crystal molecules dispersed in the form of spherical microdroplets in a PDLC material. The focus of the study is the spin-lattice relaxation in the rotating frame, T1rho(-1), measured above the nematic-isotropic transition TNI. We show that the relaxation rate T1rho(-1)--when induced by uniform molecular translational diffusion in a spherical cavity--depends on the strength of the rotating magnetic field as T1rho(-1) proportional to omega1(-alpha) where alpha varies between 0.7 and 1, depending on the thickness of the ordered surface layer. This relaxation mechanism governs mainly the transverse spin relaxation, whereas the measurements of the frequency and temperature dependence of T1rho(-1) indicate a strong effect of slowing-down of molecular translational diffusion in contact with the polymer surface and yield the average dwell-time of molecules at the surface of the order 10(-5) s.  相似文献   

18.
Low field proton nuclear spin-relaxation at variable magnetic field strength and temperature provides surface dynamical parameters such as surface diffusion coefficients, activation energies, time of residence and coefficient of surface affinity. These parameters were extracted from measurements on grain packs and natural oil-bearing rocks. On grain packs, we show first that changing the amount of surface paramagnetic impurities leads to striking different relationships between the pore-size and the relaxation times T1 and T2. These relationships are well supported by fast-diffusion (surface-limited) or slow-diffusion relaxation models. Surface relaxivity parameters rho1 and rho2 are deduced from the pore size dependence in the fast-diffusion regime. Then, we evidence the frequency and temperature dependence of the surface relaxivity rho1 by field cycling NMR relaxation and relevant theoretical models. The typical frequency dependence found allows an experimental separation of the surface and bulk microdynamics in granular packings and petroleum rocks and the determination of the above mentioned surface dynamical parameters. Finally, we present the first field cycling nuclear spin relaxation experiments performed in water/oil saturated petroleum rocks. We believe that these experiments give new information about the surface localization of these two saturating liquids in pores.  相似文献   

19.
20.
Three (1)H-(1)H homonuclear dipolar decoupling schemes for (1)H indirect detection measurements at very fast MAS are compared. The sequences require the following conditions: (i) being operable at very fast MAS, (ii) a long T(2)(') value, (iii) a large scaling factor, (iv) a small number of adjustable parameters, (v) an acquisition window, (vi) a low rf-power requirement, and (vii) a z-rotation feature. To satisfy these conditions a modified sequence named TIlted Magic-Echo Sandwich with zero degree sandwich pulse (TIMES(0)) is introduced. The basic elements of TIMES(0) consist of one sampling window and two phase-ramped irradiations, which realize alternating positive and negative 360° rotations of (1)H magnetization around an effective field tilted with an angle θ from the B(0) axis. The TIMES(0) sequence benefits from very large chemical shift scaling factors at ultra-fast MAS that reach κ(cs)=0.90 for θ=25° at ν(r)=80kHz MAS and only four adjustable parameters, resulting in easy setup. Long κ(cs)T(2)(') values, where T(2)(') is a irreversible proton transverse relaxation time, greatly enhance the sensitivity in (1)H-{(13)C} through-bond J-HMQC (Heteronuclear Multiple-Quantum Coherence) measurements with (1)H-(1)H decoupling during magnetization transfer periods. Although similar sensitivity can be obtained with through-space D-HMQC sequences, in which (13)C-(1)H dipolar interactions are recoupled, J-HMQC experiments incorporating (1)H-(1)H decoupling benefit from lower t(1)-noise, more uniform excitation of both CH, CH(2) and CH(3) moieties, and easier identification of through-bond connectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号