首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
The acoustic properties of a porous sheet of medium static air flow resistivity (around 10,000 N m s(-4)), in which a periodic set of circular inclusions is embedded and which is backed by a rigid plate, are investigated. The inclusions and porous skeleton are assumed motionless. Such a structure behaves like a multi-component diffraction grating. Numerical results show that this structure presents a quasi-total (close to unity) absorption peak below the quarter-wavelength resonance of the porous sheet in absence of inclusions. This result is explained by the excitation of a complex trapped mode. When more than one inclusion per spatial period is considered, additional quasi-total absorption peaks are observed. The numerical results, as calculated with the help of the mode-matching method described in this paper, agree with those calculated using a finite element method.  相似文献   

2.
The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.  相似文献   

3.
The acoustic response (in particular, the transmission) of a periodic distribution of macroscopic inclusions within a rigid frame porous plate (similar to a sonic crystal) is studied by the multipole method. Numerical results show that the addition of grating stacks leads to bandgaps within the audible frequency range for a small number of stacks, this being associated with a large decrease of the transmission coefficient of the initial plate. The first bandgap is of practical interest for noise shielding, i.e. very low transmission. The second bandgap enables total acoustic absorption within a narrow frequency range due to the fact that a modified mode of the plate lies within this bandgap.  相似文献   

4.
The acoustic transmission loss of a finite periodic array of long rigid cylinders, without and with porous absorbent covering, is studied both theoretically and in the laboratory. A multiple scattering model is extended to allow for the covering and its acoustical properties are described by a single parameter semi-empirical model. Data from laboratory measurements and numerical results are found to be in reasonable agreement. These data and predictions show that porous covering reduces the variation of transmission loss with frequency due to the stop/pass band structure observed with an array of rigid cylinders with similar overall radius and improves the overall attenuation in the higher frequency range. The predicted sensitivities to covering thickness and effective flow resistivity are explored. It is predicted that a random covered array also gives better attenuation than a random array of rigid cylinders with the same overall radius and volume fraction.  相似文献   

5.
Solidly mounted integrated transducers with a Bragg cell inserted between the piezoelectric film and the substrate are investigated for high frequency ultrasonic applications. A numerically stable recursive one dimensional transmission/reflection model was used to analyze the behavior of the periodic structure. This theoretical analysis includes the study of the influence of the acoustic properties of the constitutive layer, the effect of the number of cells and their arrangement. A 35 MHz integrated transducer consisting in a PZT ceramic laid down on a Au/PZT Bragg cell deposited on a porous substrate was fabricated and characterized. Both theoretical and experimental results highlight the interest of using a periodic structure for high frequency ultrasonic applications.  相似文献   

6.
The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to l0 kHz for normal incidence, and the influence of the incident angle is also discussed.  相似文献   

7.
含三聚氰胺多孔材料分层复合介质吸声特性*   总被引:1,自引:1,他引:0       下载免费PDF全文
白聪  沈敏 《应用声学》2019,38(1):76-84
三聚氰胺泡沫材料是一种具有高开孔率的多孔材料,具备优良的吸音、防火隔热及环保性能,可以作为吸声材料与弹性板、空腔介质形成复合结构,在建筑、航空、交通工具等工程领域有广泛的应用。该文基于Biot理论和分层介质在交界面处的不同边界条件,建立非均匀复合介质背衬刚性壁面结构的理论声学模型,详细分析了多孔材料布局对复合结构吸声特性的影响。该文理论模型计算的结果与阻抗实验得到的垂直入射吸声系数基本一致,验证了理论模型的正确性。结果表明:在多孔材料前面增加空气层可以改善高频吸声特性;在多孔材料后面增加空气层可以改善复合结构低频吸声特性。通过合理配置多孔材料,可以在应用需求频段上达到满意的吸声效果。  相似文献   

8.
水下吸声覆盖层声管测试的背衬研究   总被引:2,自引:1,他引:2       下载免费PDF全文
在吸声覆盖层水声声管测试的实验研究中,覆盖层背衬的选择对测量结果有重大影响。在我们二维理论研究的基础上,建立了吸声覆盖层声学特性的传递函数模型,分析比较了不同背衬对吸声覆盖层声学性能的影响。结果表明,不同背衬对吸声覆盖层吸声性能的影响具有明显不同的特性。背衬为双层壳体时,水层对吸声覆盖层的吸声系数曲线有明显的调制现象。背衬为单层壳体或双层壳体时,从整体上讲,吸声系数更趋近于刚性背衬而非软背衬的情况。在实验室小样品声管测试中,以较厚的钢柱作为背衬的测试数据来衡量吸声覆盖层性能更为合适,且易于实现。  相似文献   

9.
This work investigates the acoustical properties of a multilayer porous material in which periodic inclusions are embedded. The material is assumed to be backed by a rigid wall. Most of the studies performed in this field used the multipole method and are limited to circular shape inclusions. Here, a mode matching approach, more convenient for a layered system, is adopted. The inclusions can be in the form of rigid scatterers of an arbitrary shape, in the form of an air-filled cavity or in the form of a porous medium with contrasting properties. The computational approach is validated on simple geometries against other numerical schemes and with experimental results obtained in an anechoic room on a rigid grating embedded in a porous material made of 2 mm glass beads. The method is used to study the acoustic absorption behavior of this class of materials in the low frequency range and at a range of angles of incidence.  相似文献   

10.
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives.  相似文献   

11.
The excitation of hard X-ray surface modes of a periodic multilayer is studied with the help of theoretical modeling. It is found that a hard X-ray surface mode can appear in a specific periodic multilayer coated with a high-density reflecting layer. The generation of the hard X-ray surface modes is shown to be effective only at a certain set of the structural parameters of the multilayer. A method for the calculation of the propagation (attenuation) length of the surface mode running in the periodic multilayer is described. The excitation of the hard X-ray surface modes is compared with that of optical surface modes in photonic crystals. The relationship between the surface modes and guided modes of periodic multilayers is discussed.  相似文献   

12.
The coupled mode (CM) and finite-element methods (FEMs) are developed and used to predict the acoustic reflection coefficient of a semi-infinite porous medium with closely spaced two-dimensional (2D) periodical corrugations. These methods are also applied to predict the reflection coefficient of a periodic array of porous corrugations installed on an acoustically rigid surface. It is shown that the predictions by the both methods agree closely. The reflection coefficient and Brewster angle of total refraction for the corrugated semi-infinite medium predicted with these methods are compared against that predicted by the Biot/Tolstoy/Howe/Twersky and extended Twersky models. A similar analysis is carried out for porous corrugations set on a rigid backing. The behavior of the reflection coefficient and the pole in the expression for the reflection coefficient located close to grazing incidence is studied.  相似文献   

13.
Experimental and theoretical modeling of the vibro-acoustic performance of a distributed mode loudspeaker (DML) suggest that their acoustic emission can be significantly affected by the presence of a porous layer. The amplitude of the surface velocity of the panel and the acoustic pressure on the porous surface are reduced largely in the vicinity of structural resonances due to the additional radiation damping and visco-thermal absorption phenomenon in the porous layer. The experimental results suggest that a porous layer between a rigid base and a DML panel can considerably alter its acoustic emission in the near field and in the far field. This is illustrated by a reduction in the level of fluctuations in the emitted acoustic pressure spectra. These fluctuations are normally associated with the interference between the sound emitted by the front surface of the speaker and that emitted from the back. Another contribution comes from the pronounced structural resonances in the surface velocity spectrum. The results of this work suggest that the acoustic boundary conditions near a DML can be modified by the porous layer so that a desired acoustic output can be attained.  相似文献   

14.
Backing effects on the underwater acoustic absorption of a viscoelastic polymer slab embedded with locally resonant scatterers are reported. The polymer slab is embedded with two layers of locally resonant scatterers, i.e. Al spheres coated by soft silicon rubber. Theoretical absorption coefficients of the polymer slab under different backings using a layer multiple scattering method show good agreement with the experimental results, which supports unambiguously the experimental observation. Then relations between the resonance modes and the low-frequency absorption peaks of the composite slab are clarified to address the absorption mechanisms. It shows that the mass of the steel backing affects evidently the low-frequency absorption, the absorption peak shifts to lower frequency range while increasing the backing mass.  相似文献   

15.
刘聪  徐晓东  刘晓峻 《物理学报》2013,62(20):204302-204302
利用传递矩阵法, 从理论上建立了全向入射条件下一维固-流周期结构中的声传播模型, 在此基础上计算、分析并比较了无限周期结构的声能带结构和有限周期结构中的声传输特性. 研究结果表明, 当声波以一定的入射角入射时, 固-流周期结构的低频通带区域存在一个声裂隙, 该声裂隙所对应的入射角大小与构成周期结构的固体层和流体层的密度或结构尺寸无关, 而仅取决于构成该周期性结构材料的波速. 关键词: 传递矩阵 全向入射 固-流周期结构 声裂隙  相似文献   

16.
含周期性空腔结构吸声机理的研究*   总被引:1,自引:1,他引:0       下载免费PDF全文
首先建立并验证了含轴对称空腔周期性结构吸声特性计算的简化有限元仿真方法。在水下环境,用简化的有限元模型结合遗传算法对含周期性圆柱空腔结构的吸声性能进行了优化设计。从能量耗散、变形和模态的角度分析了含周期性空腔结构的吸声机理。空腔结构谐振包括表层的弯曲振动和空腔附近粒子的径向运动,且径向运动随吸声结构厚度方向也是变化的。相对低频区主要激起表层振动模态,高频区激起径向运动模态,且径向振动对声学性能影响很大,其更有利于促进纵波转化为能量更易消散的横波。  相似文献   

17.
Acoustical composite materials obtained through a set of porous inclusions are studied. A theoretical model based on the homogenization hypotheses introduced by Boutin et al. [1] is presented; the inclusions are supposed periodic and the frame rigid. The idea behind the inclusion of a second acoustical porous material into the original single porosity material, is to obtain the pressure diffusion effect already observed in the double porosity case. At the same time, the main disadvantages of double porosity are faced, especially the absorption behavior at very low frequency and the loss of performances in transmission. Experimental data are obtained in Kundt Tubes of different dimensions in terms of absorption curves and compared to analytical results for representative configurations, thus validating the theoretical model.  相似文献   

18.
The optimization of acoustic absorption by metaporous materials made of complex unit cells with 2D resonant inclusions is realized using genetic algorithm. A nearly total absorption over a wide frequency band can be obtained for thin structures, even for frequencies below the quarter wavelength resonances i.e., in a sub-wavelength regime. The high absorption performances of this material are due to the interplay of usual visco-thermal losses, local resonances and trapped modes. The density of resonant and trapped modes in this dissipative porous layer, is a key parameter for broadband absorption. The best configurations and critical coupling conditions are found by genetic algorithm optimization. Several types of resonators are included gradually in the studied configurations (split-rings, Helmholtz resonators, back cavities) with increasing complexity. The optimization leads to a metaporous structure with a 2-cm sub-wavelength layer thickness, exhibiting a nearly total absorption between 1800 Hz and 7000 Hz. The influence of the incidence angle on the absorption properties is also shown.  相似文献   

19.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

20.
Features of the interaction between optical and acoustical waves with the same wavelength and multiple of the structural layer period, propagating simultaneously through periodic structures, are analyzed. The current state of and prospects for photon-phonon crystals being used for amplification, the generation of gigahertz acoustic waves, and other nonlinear optical and acoustic effects are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号