首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
臧小飞  李菊萍  谭磊 《物理学报》2007,56(8):4348-4352
利用平均场理论和单空间模近似,研究了偶极-偶极相互作用下双势阱中总自旋F=1的旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质.在给定的初态条件下,研究结果表明:当λA+2λd=0时,凝聚体只表现为磁化振荡行为;当λA+2λd≠0时,凝聚体既存在磁化振荡行为,又存在磁自陷俘现象. 关键词: 玻色-爱因斯坦凝聚 自旋 磁化率  相似文献   

2.
实现玻色-爱因斯坦凝聚的原子大多具备内部自旋自由度,在光势阱下原子内部自旋被解冻,从而使原子可以凝聚到各个超精细量子态上,形成旋量玻色-爱因斯坦凝聚体.灵活的自旋自由度成为体系相关的动力学变量,可以使体系出现新奇的拓扑量子态,如自旋畴壁、涡旋、磁单极子、斯格明子等.本文综述了旋量玻色-爱因斯坦凝聚的实验和理论研究,旋量玻色-爱因斯坦凝聚体中拓扑缺陷的种类,以及两分量、三分量玻色-爱因斯坦凝聚体中拓扑缺陷的研究进展.  相似文献   

3.
刘超飞  万文娟  张赣源 《物理学报》2013,62(20):200306-200306
利用阻尼映射Gross-Pitaevkii方程, 研究了二维体系中自旋轨道耦合的 23Na自旋-1 玻色-爱因斯坦凝聚体中的涡旋斑图, 探索自旋轨道耦合强度对涡旋斑图的影响. 研究发现, 较弱的自旋轨道耦合就可以完全破坏不考虑自旋轨道耦合情况下出现的周期性涡旋晶格; 在自旋轨道耦合较强的情况下, 各自旋态的涡旋易形成涡旋组, 它们绕凝聚体中心形成花瓣状涡旋斑图. 关键词: 玻色-爱因斯坦凝聚体 自旋 涡旋  相似文献   

4.
用量子主方程的平均场近似和代数动力学研究玻色-爱因斯坦凝聚体的sympathetic cooling; 用玻色-爱因斯坦凝聚体波函数的运动方程的平均场近似 非线性薛定谔方程研究玻色 爱因斯坦凝聚体的暗孤子和明孤子激发.  相似文献   

5.
张剑  翟荟 《物理》2006,35(7):553-555
文章简要地介绍了玻色-爱因斯坦凝聚体中出现的涡旋和铬原子玻色-爱因斯坦凝聚体的实验研究进展,还介绍了文章作者的一项最新的理论工作。研究指出,由于铬原子磁偶极相互作用的影响,凝聚体中将出现奇特的各向异性的涡旋晶格结构。  相似文献   

6.
原子间相互作用对原子激光压缩性质的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
周明  黄春佳 《物理学报》2004,53(1):54-57
研究了原子间相互作用对光场与原子玻色-爱因斯坦凝聚体相互作用系统中耦合输出的相干原子束压缩性质的影响.结果表明:原子激光的两正交分量的涨落均可压缩,玻色-爱因斯坦凝聚体中原子间的相互作用不利于原子激光的压缩. 关键词: 玻色-爱因斯坦凝聚 压缩相干态光场 压缩原子激光  相似文献   

7.
本文介绍了北京大学建立的玻色-爱因斯坦凝聚实验平台,实现了玻色-爱因斯坦凝聚(图1),获得了原子数为五十万个,温度为50纳开尔文的玻色凝聚体。在此基础上我们精密测量了玻色-爱因斯坦凝聚的相变温度,还利用玻色-爱因斯坦凝聚实验平台通过马越让那跃迁获得了可控的多量子态玻色爱因斯坦凝聚体。并利用四种方法获得了原子激光(图2),其中有三种方法是国际上第一次使用。另外,我们提出了将玻色一爱因斯坦凝聚转入Magic光晶格阱,实现精度优于10^-17的新型原子钟的设想。  相似文献   

8.
李明 《物理学报》2011,60(6):63201-063201
利用格子液体方法对V型三能级原子玻色-爱因斯坦凝聚体与双模压缩相干态光场相互作用系统的哈密顿量进行分析,发现文献中对原子间相互作用部分的处理有不合理之处,从而对该哈密顿量作出了改进并研究了V型三能级原子玻色-爱因斯坦凝聚体与双模压缩相干态光场相互作用系统中原子激光的两个正交分量的压缩性质.研究表明:V型三能级原子玻色-爱因斯坦凝聚体中光场-原子相互作用强度对原子激光的两正交分量的涨落有明显的影响. 关键词: 玻色-爱因斯坦凝聚 V型三能级原子 压缩相干态 压缩原子激光  相似文献   

9.
计算分析了处于单模Fabry-Pérot腔内的无相互作用玻色-爱因斯坦凝聚体在引入自旋轨道耦合作用下的色散关系. F-P腔为冷原子系统提供了量子化的光晶格,利用紧束缚近似和平均场近似进行二次量子化,选取合适的腔参数得到单原子缀饰态能级的具体表达式.两束弱的Raman激光和外加磁场作用于玻色-爱因斯坦凝聚体,实现了有效的自旋轨道耦合,提供了一个人工规范势,使玻色-爱因斯坦凝聚体中产生了沿腔轴方向一维的高度可控的狄拉克点.  相似文献   

10.
计算分析了处于单模Fabry-Pérot腔内的无相互作用玻色-爱因斯坦凝聚体在引入自旋轨道耦合作用下的色散关系.F-P腔为冷原子系统提供了量子化的光晶格,利用紧束缚近似和平均场近似进行二次量子化,选取合适的腔参数得到单原子缀饰态能级的具体表达式.两束弱的Raman激光和外加磁场作用于玻色-爱因斯坦凝聚体,实现了有效的自旋轨道耦合,提供了一个人工规范势,使玻色-爱因斯坦凝聚体中产生了沿腔轴方向一维的高度可控的狄拉克点.  相似文献   

11.
We present a 2D NMR investigation of the gapped spin-1/2 compound Cu2(C5H10N2D2)2Cl4. Our measurements reveal the presence of a magnetic field-induced transverse staggered magnetization (TSM) which persists well below and above the field-induced 3D long-range magnetically ordered (FIMO) phase. The symmetry of this TSM is different from that of the TSM induced by the order parameter of the FIMO phase. Its origin, field dependence, and symmetry can be explained by an intradimer Dzyaloshinskii-Moriya interaction, as shown by DMRG calculations on a spin-1/2 ladder. This leads us to predict that the transition into the FIMO phase is not in the BEC universality class.  相似文献   

12.
We report on measurements of dynamical suppression of interwell tunneling of a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions. Furthermore, we have verified that, in general, the strong shaking does not destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength as the control parameter.  相似文献   

13.
An initially stable 85Rb Bose-Einstein condensate (BEC) was subjected to a carefully controlled magnetic field pulse near a Feshbach resonance. This pulse probed the strongly interacting regime for the BEC, with the diluteness parameter (na(3)) ranging from 0.01 to 0.5. Condensate number loss resulted from the pulse, and for triangular pulses shorter than 1 ms, decreasing the pulse length actually increased the loss, until very short time scales (approximately 10 micros) were reached. The observed time dependence is very different from that expected in traditional inelastic loss processes, suggesting the presence of new microscopic BEC physics.  相似文献   

14.
We consider the evolution of superfluid properties of a three-dimensional p-wave Fermi gas from a weak coupling Bardeen-Cooper-Schrieffer (BCS) to strong coupling Bose-Einstein condensation (BEC) limit as a function of scattering volume. At zero temperature, we show that a quantum phase transition occurs for p-wave systems, unlike the s-wave case where the BCS to BEC evolution is just a crossover. Near the critical temperature, we derive a time-dependent Ginzburg-Landau (GL) theory and show that the GL coherence length is generally anisotropic due to the p-wave nature of the order parameter, and becomes isotropic only in the BEC limit.  相似文献   

15.
A simple second quantization model is used to describe a two-mode Bose-Einstein condensate (BEC), which can be written in terms of the generators of a SU(2) algebra with three parameters. We study the behavior of the entanglement entropy and localization of the system in the parameter space of the model. The phase transitions in the parameter space are determined by means of the coherent state formalism and the catastrophe theory, which besides let us get the best variational state that reproduces the ground state energy. This semiclassical method let us organize the energy spectrum in regions where there are crossings and anticrossings. The ground state of the two-mode BEC, depending on the values of the interaction strengths, is dominated by a single Dicke state, a spin collective coherent state, or a superposition of two spin collective coherent states. The entanglement entropy is determined for two recently proposed partitions of the two-mode BEC that are called separation by boxes and separation by modes of the atoms. The entanglement entropy in the boxes partition is strongly correlated to the properties of localization in phase space of the model, which is given by the evaluation of the second moment of the Husimi function. To compare the fitness of the trial wavefunction its overlap with the exact quantum solution is evaluated. The entanglement entropy for both partitions, the overlap and localization properties of the system get singular values along the separatrix of the two-mode BEC, which indicates the phase transitions which remain in the thermodynamical limit, in the parameter space.  相似文献   

16.
We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T=0 using the fixed-node diffusion Monte?Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. Results on Tan's contact parameter associated with short-range physics are also reported along the BCS-BEC crossover.  相似文献   

17.
We develop a continuation block successive over-relaxation (BSOR)-Lanczos–Galerkin method for the computation of positive bound states of time-independent, coupled Gross–Pitaevskii equations (CGPEs) which describe a multi-component Bose–Einstein condensate (BEC). A discretization of the CGPEs leads to a nonlinear algebraic eigenvalue problem (NAEP). The solution curve with respect to some parameter of the NAEP is then followed by the proposed method. For a single-component BEC, we prove that there exists a unique global minimizer (the ground state) which is represented by an ordinary differential equation with the initial value. For a multi-component BEC, we prove that m identical ground/bound states will bifurcate into m different ground/bound states at a finite repulsive inter-component scattering length. Numerical results show that various positive bound states of a two/three-component BEC are solved efficiently and reliably by the continuation BSOR-Lanczos–Galerkin method.  相似文献   

18.
Expansion of a Bose-Einstein condensate (BEC) is studied in the presence of a random potential. The expansion is controlled by a single parameter, (microtau(eff)/variant Planck's over 2pi), where micro is the chemical potential, prior to the release of the BEC from the trap, and tau(eff) is a transport relaxation time which characterizes the strength of the disorder. Repulsive interactions (nonlinearity) facilitate transport and can lead to diffusive spreading of the condensate which, in the absence of interactions, would have remained localized in the vicinity of its initial location.  相似文献   

19.
A model of the perturbed complex Toda chain (PCTC) to describe the dynamics of a Bose-Einstein condensate (BEC) N-soliton train trapped in an applied combined external potential consisting of both a weak harmonic and tilted periodic component is first developed. Using the developed theory, the BEC N-soliton train dynamics is shown to be well approximated by 4N coupled nonlinear differential equations, which describe the fundamental interactions in the system arising from the interplay of amplitude, velocity, centre-of-mass position, and phase. The simplified analytic theory allows for an efficient and convenient method for characterizing the BEC N-soliton train behaviour. It further gives the critical values of the strength of the potential for which one or more localized states can be extracted from a soliton train and demonstrates that the BEC N-soliton train can move selectively from one lattice site to another by simply manipulating the strength of the potential.  相似文献   

20.
We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号