首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bis(4‐picoline‐κN)gold(I) dibromidoaurate(I), [Au(C6H7N)2][AuBr2], (I), crystallizes in the monoclinic space group P21/n, with two half cations and one general anion in the asymmetric unit. The cations, located on centres of inversion, assemble to form chains parallel to the a axis, but there are no significant contacts between the cations. Cohesion is provided by flanking anions, which are connected to the cations by short Au...Au contacts and C—H...Br hydrogen bonds, and to each other by Br...Br contacts. The corresponding chloride derivative, [Au(C6H7N)2][AuCl2], (II), is isotypic. A previous structure determination of (II), reported in the space group P with very similar axis lengths to those of (I) [Lin et al. (2008). Inorg. Chem. 47 , 2543–2551], might be identical to the structure presented here, except that its γ angle of 88.79 (7)° seems to rule out a monoclinic cell. No phase transformation of (II) could be detected on the basis of data sets recorded at 100, 200 and 295 K.  相似文献   

2.
Recently described and fully characterized trinuclear rhodium‐hydride complexes [{Rh(PP*)H}32‐H)33‐H)][anion]2 have been investigated with respect to their formation and role under the conditions of asymmetric hydrogenation. Catalyst–substrate complexes with mac (methyl (Z)‐ N‐acetylaminocinnamate) ([Rh(tBu‐BisP*)(mac)]BF4, [Rh(Tangphos)(mac)]BF4, [Rh(Me‐BPE)(mac)]BF4, [Rh(DCPE)(mac)]BF4, [Rh(DCPB)(mac)]BF4), as well as rhodium‐hydride species, both mono‐([Rh(Tangphos)‐ H2(MeOH)2]BF4, [Rh(Me‐BPE)H2(MeOH)2]BF4), and dinuclear ([{Rh(DCPE)H}22‐H)3]BF4, [{Rh(DCPB)H}22‐H)3]BF4), are described. A plausible reaction sequence for the formation of the trinuclear rhodium‐hydride complexes is discussed. Evidence is provided that the presence of multinuclear rhodium‐hydride complexes should be taken into account when discussing the mechanism of rhodium‐promoted asymmetric hydrogenation.  相似文献   

3.
Rh2(OAc)4‐Catalyzed decomposition of diazo esters in the presence of perfluoroalkyl‐ or perfluoroaryl‐substituted silyl enol ethers smoothly provided the corresponding alkyl 2‐siloxycyclopropanecarboxylates in very good yields. The generated donor? acceptor cyclopropanes are equivalents of γ‐oxo esters, which we demonstrated by their one‐pot transformations to yield fluorine‐containing heterocycles. A reductive procedure selectively afforded perfluoroalkyl‐substituted γ‐hydroxy esters or γ‐lactones. The treatment of the donor? acceptor cyclopropanes with hydrazine or phenylhydrazine afforded a series of perfluoroalkyl‐ and perfluoroaryl‐substituted 4,5‐dihydropyridazin‐3(2H)‐ones.  相似文献   

4.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

5.
6.
7.
8.
A remote 4J(F,H) coupling (F? C(α)? C(O)? N? H) of up to 4.2 Hz in α‐fluoro amides with antiperiplanar arrangement of the C? F and the C?O bonds (dihedral angle F? C? C?O ca. 180°) confirms that previous NMR determinations, using the XPLOR‐NIH procedure, of the secondary structures of β‐peptides containing β3hAla(αF) and β3hAla(αF2) residues were correct. In contrast, molecular‐dynamics (MD) simulations, using the GROMOS program with the 45A3 force field, led to an incorrect conclusion about the relative stability of secondary structures of these β‐peptides. The problems encountered in NMR analyses and computations of the structures of backbone‐F‐substituted peptides are briefly discussed.  相似文献   

9.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   

10.
11.
The title complexes [μ‐(E)‐4,4′‐(ethene‐1,2‐diyl)­di­pyridine‐κ2N:N′]­bis­[halotris(4‐methyl­phenyl)­tin(IV)], [Sn2(C7H7)6X2(C12H10N2)], where halo is chloro (X = Cl) and bromo (X = Br) are isostructural. In both crystals, the mol­ecules lie on inversion centers, and there are voids of ca 80 Å3 that could, but apparently do not, accommodate water mol­ecules. The corresponding iodo structure (X = I) is almost, but not quite, isostructural with the other two compounds; when Br is changed to I, the length of the c axis decreases by more than 1 Å and the voids are no longer large enough to accomodate any solvent mol­ecule. The related complex [μ‐(E)‐4,4′‐(ethene‐1,2‐diyl)­di­pyridine‐κ2N:N′]­bis­[chloro­tri­phenyl­tin(IV)], [Sn2(C6H5)6Cl2(C12H10N2)], crystallizes in a related structure, but the mol­ecules lie on general rather than on special positions. The molecular structures of the four complexes are similar, but the conformation of the phenyl derivative is approximately eclipsed rather than staggered.  相似文献   

12.
13.
14.
15.
Reactions of the unsymmetric dicopper(II) peroxide complex [CuII2(μ‐η11‐O2)(m‐XYLN3N4)]2+ ( 1 O2 , where m‐XYL is a heptadentate N‐based ligand), with phenolates and phenols are described. Complex 1 O2 reacts with p‐X‐PhONa (X=MeO, Cl, H, or Me) at ?90 °C performing tyrosinase‐like ortho‐hydroxylation of the aromatic ring to afford the corresponding catechol products. Mechanistic studies demonstrate that reactions occur through initial reversible formation of metastable association complexes [CuII2(μ‐η11‐O2)(p‐X‐PhO)(m‐XYLN3N4)]+ ( 1 O2 ?X‐PhO) that then undergo ortho‐hydroxylation of the aromatic ring by the peroxide moiety. Complex 1 O2 also reacts with 4‐X‐substituted phenols p‐X‐PhOH (X=MeO, Me, F, H, or Cl) and with 2,4‐di‐tert‐butylphenol at ?90 °C causing rapid decay of 1 O2 and affording biphenol coupling products, which is indicative that reactions occur through formation of phenoxyl radicals that then undergo radical C? C coupling. Spectroscopic UV/Vis monitoring and kinetic analysis show that reactions take place through reversible formation of ground‐state association complexes [CuII2(μ‐η11‐O2)(X‐PhOH)(m‐XYLN3N4)]2+ ( 1 O2 ?X‐PhOH) that then evolve through an irreversible rate‐determining step. Mechanistic studies indicate that 1 O2 reacts with phenols through initial phenol binding to the Cu2O2 core, followed by a proton‐coupled electron transfer (PCET) at the rate‐determining step. Results disclosed in this work provide experimental evidence that the unsymmetric 1 O2 complex can mediate electrophilic arene hydroxylation and PCET reactions commonly associated with electrophilic Cu2O2 cores, and strongly suggest that the ability to form substrate?Cu2O2 association complexes may provide paths to overcome the inherent reactivity of the O2‐binding mode. This work provides experimental evidence that the presence of a H+ completely determines the fate of the association complex [CuII2(μ‐η11‐O2)(X‐PhO(H))(m‐XYLN3N4)]n+ between a PCET and an arene hydroxylation reaction, and may provide clues to help understand enzymatic reactions at dicopper sites.  相似文献   

16.
The bis(phenylhydrazone) of substituted diphenacyl sulfides (=1,1′‐[thiobis(methylene)]bis[arylmethanone] bis(2‐phenylhydrazones)) 1 underwent a tandem sequence of reactions upon treatment with Vilsmeier reagent, ultimately yielding 3‐aroylindoles (=aryl(1H‐indol‐3‐yl)methanones) 3 (Scheme 1 and Table 1). The reaction seems to be product selective depending upon the reaction temperature.  相似文献   

17.
18.
19.
The recently synthesized rhodium complex [Rh{P(C5H9)22‐C5H7)}(Me2HNBH3)2]BArF4 ( 2 ), which incorporates two amine‐boranes coordinated to the rhodium center with two different binding modes, namely η1 and η2, has been used to probe whether bis(σ‐amine‐borane) motifs are important in determining the general course of amine‐boranes dehydrocoupling reactions. DFT calculations have been carried out to explore mechanistic alternatives that ultimately lead to the formation of the amine‐borane cyclic dimer [BH2NMe2]2 ( A ) by hydrogen elimination. Sequential concerted, on‐ or off‐metal, intramolecular dehydrogenations provide two coordinated amine‐borane molecules. Subsequent dimerization is likely to occur off the metal in solution. In spite of the computationally confirmed presence of a BH???NH hydrogen bond between amine‐borane ligands, neither a simple intermolecular route for dehydrocoupling of complex 2 is operating, nor seems [Rh{P(C5H9)22‐C5H7)} B ]+ to be important for the whole dehydrocoupling process.  相似文献   

20.
Density functional calculations on a mu-oxo-mu-peroxodiiron complex (1) with a tetrapodal ligand BPP (BPP=N,N-bis(2-pyridylmethyl)-3-aminopropionate) are presented that is a biomimetic of the active site region of ribonucleotide reductase (RNR). We have studied all low-lying electronic states and show that it has close-lying broken-shell singlet and undecaplet (S=0, 5) ground states with essentially two sextet spin iron atoms. In strongly distorted electronic systems in which the two iron atoms have different spin states, the peroxo group moves considerably out of the plane of the mu-oxodiiron group due to orbital rearrangements. The calculated absorption spectra of (1,11)1 are in good agreement with experimental studies on biomimetics and RNR enzyme systems. Moreover, vibrational shifts in the spectrum due to (18)O(2) substitution of the oxygen atoms in the peroxo group follow similar trends as experimental observations. To identify whether the mu-oxo-mu-1,2-peroxodiiron or the mu-oxo-mu-1,1-peroxodiiron complexes are able to epoxidize substrates, we studied the reactivity patterns versus propene. Generally, the reactions are stepwise via radical intermediates and proceed by two-state reactivity patterns on competing singlet and undecaplet spin state surfaces. However, both the mu-oxo-mu-1,2-peroxodiiron and mu-oxo-mu-1,1-peroxodiiron complex are sluggish oxidants with high epoxidation barriers. The epoxidation barriers for the mu-oxo-mu-1,1-peroxodiiron complex are significantly lower than the ones for the mu-oxo-mu-1,2-peroxodiiron complex but still are too high to be considered for catalytic properties. Thus, theory has ruled out two possible peroxodiiron catalysts as oxidants in RNR enzymes and biomimetics and the quest to find the actual oxidant in the enzyme mechanism continues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号