首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Hydride abstraction from the neutral gold cycloheptatrienyl complex [( P )Au(η1‐C7H7)] ( P =P(tBu)2(o‐biphenyl)) with triphenylcarbenium tetrafluoroborate at ?80 °C led to the isolation of the cationic gold cycloheptatrienylidene complex [( P )Au(η1‐C7H6)]+ BF4? in 52 % yield, which was characterized in solution and by single‐crystal X‐ray diffraction. This cycloheptatrienylidene complex represents the first example of a gold carbenoid complex that lacks conjugated heteroatom stabilization of the electron‐deficient C1 carbon atom. The cycloheptatrienylidene ligand of this complex is reactive; it can be reduced by mild hydride donors, and converted to tropone in the presence of pyridine N‐oxide.  相似文献   

2.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

3.
Methoxide abstraction from gold acetylide complexes of the form (L)Au[η1‐C≡CC(OMe)ArAr′] (L=IPr, P(tBu)2(ortho‐biphenyl); Ar/Ar′=C6H4X where X=H, Cl, Me, OMe) with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at −78 °C resulted in the formation of the corresponding cationic gold diarylallenylidene complexes [(L)Au=C=C=CArAr′]+ OTf in ≥85±5 % yield according to 1H NMR analysis. 13C NMR and IR spectroscopic analysis of these complexes established the arene‐dependent delocalization of positive charge on both the C1 and C3 allenylidene carbon atoms. The diphenylallenylidene complex [(IPr)Au=C=C=CPh2]+ OTf reacted with heteroatom nucleophiles at the allenylidene C1 and/or C3 carbon atom.  相似文献   

4.
Methoxide abstraction from gold acetylide complexes of the form (L)Au[η1‐C≡CC(OMe)ArAr′] (L=IPr, P(tBu)2(ortho‐biphenyl); Ar/Ar′=C6H4X where X=H, Cl, Me, OMe) with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at ?78 °C resulted in the formation of the corresponding cationic gold diarylallenylidene complexes [(L)Au=C=C=CArAr′]+ OTf? in ≥85±5 % yield according to 1H NMR analysis. 13C NMR and IR spectroscopic analysis of these complexes established the arene‐dependent delocalization of positive charge on both the C1 and C3 allenylidene carbon atoms. The diphenylallenylidene complex [(IPr)Au=C=C=CPh2]+ OTf? reacted with heteroatom nucleophiles at the allenylidene C1 and/or C3 carbon atom.  相似文献   

5.
Hydride abstraction from the gold (disilyl)ethylacetylide complex [( P )Au{η1‐C?CSi(Me)2CH2CH2SiMe2H}] ( P =P(tBu)2o‐biphenyl) with triphenylcarbenium tetrakis(pentafluorophenyl)borate at ?20 °C formed the cationic gold (β,β‐disilyl)vinylidene complex [( P )Au?C?CSi(Me)2CH2CH2Si (Me)2]+B(C6F5)4? with ≥90 % selectivity. 29Si NMR analysis of this complex pointed to delocalization of positive charge onto both the β‐silyl groups and the ( P )Au fragment. The C1 and C2 carbon atoms of the vinylidene complex underwent facile interconversion (ΔG=9.7 kcal mol?1), presumably via the gold π‐disilacyclohexyne intermediate [( P )Au{η2‐C?CSi(Me)2CH2CH2Si (Me)2}]+B(C6F5)4?.  相似文献   

6.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

7.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

8.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

9.
The reaction of [Au(C?C?n‐Bu)]n with [Pd(η3‐allyl)Cl(PPh3)] results in a ligand and alkynyl rearrangement, and leads to the heterometallic complex [Pd(η3‐allyl){Au(C?C?n‐Bu)2}]2 ( 3 ) with an unprecedented bridging bisalkynyl–gold ligand coordinated to palladium. This is a formal gold‐to‐gold transmetalation that occurs through reversible alkynyl transmetalations between gold and palladium.  相似文献   

10.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

11.
The mechanism of the intermolecular hydroamination of 3-methylbuta-1,2-diene ( 1 ) with N-methylaniline ( 2 ) catalyzed by (IPr)AuOTf has been studied by employing a combination of kinetic analysis, deuterium labelling studies, and in situ spectral analysis of catalytically active mixtures. The results of these and additional experiments are consistent with a mechanism for hydroamination involving reversible, endergonic displacement of N-methylaniline from [(IPr)Au(NHMePh)]+ ( 4 ) by allene to form the cationic gold π-C1,C2-allene complex [(IPr)Au(η2-H2C=C=CMe2)]+ ( I ), which is in rapid, endergonic equilibrium with the regioisomeric π-C2,C3-allene complex [(IPr)Au(η2-Me2C=C=CH2)]+ ( I′ ). Rapid and reversible outer-sphere addition of 2 to the terminal allene carbon atom of I′ to form gold vinyl complex (IPr)Au[C(=CH2)CMe2NMePh] ( II ) is superimposed on the slower addition of 2 to the terminal allene carbon atom of I to form gold vinyl complex (IPr)Au[C(=CMe2)CH2NMePh] ( III ). Selective protodeauration of III releases N-methyl-N-(3-methylbut-2-en-1-yl)aniline ( 3 a ) with regeneration of 4 . At high conversion, gold vinyl complex II is competitively trapped by an (IPr)Au+ fragment to form the cationic bis(gold) vinyl complex {[(IPr)Au]2[C(=CH2)CMe2NMePh]}+ ( 6 ).  相似文献   

12.
The title compound, 7‐[(Ph2P)Au(PPh3)]‐8‐(CH3)‐7,8‐nido‐C2B9H10]·­0.5CH2Cl2 or [Au(C15H23B9P)­(C18H15P)]·­0.5CH2Cl2, is the first reported gold derivative of the ligand [7‐­(Ph2P)‐8‐(CH3)‐7,8‐nido‐C2B9H10]?. It has a mono­nuclear structure with the gold centre in an essentially linear coordination [P—Au—P 174.041 (15)°]. The open C2B3 face contains one H atom that is strongly bonded to the central B atom and semi‐bridging to a neighbouring B atom [B—H distances 1.070 (16) and 1.45 (3) Å].  相似文献   

13.
Halfsandwich‐Type Complexes of Iridium with Tetramethylcyclopentadienyl as Ligand The iridium(I) complexes [(η5‐C5HMe4)Ir(C2H4)2] ( 2 ) and [(η5‐C5HMe4)Ir(CO)2] ( 4 ), which have been prepared from [IrCl(C2H4)2]2 or [IrCl(CO)3]n and LiC5HMe4, react with tosylchloride as well as with X2 (X = Cl, Br, I) by oxidative addition to yield the corresponding iridium(III) compounds. Treating the complexes [(η5‐C5HMe4)IrX2]n ( 7 — 9 ) with CO or PR3 leads to a cleavage of the halide bridges and to the formation of the mononuclear products [(η5‐C5HMe4)IrX2(CO)] ( 10 , 11 ) and [(η5‐C5HMe4)IrX2(PR3)] ( 12 — 20 ), respectively. The molecular structure of [(η5‐C5HMe4)IrBr2(PiPr3)] ( 18 ) was determined crystallographically. The reactions of 8 (X = Br) and 9 (X = I) with Ph2P(CH2)nPPh2 (n = 1 or 2) afford the bridged compounds [{(η5‐C5HMe4)IrX2}2{μ‐Ph2P(CH2)nPPh2}] ( 21—23 ). The dihalide complexes [(η5‐C5HMe4)IrI2(PPh3)] ( 16 ) and [(η5‐C5HMe4)IrX2(PiPr3)] ( 17—19 ) react with hydride sources to give the dihydrido‐ and monohydrido derivatives [(η5‐C5HMe4)IrH2(PPh3)] ( 24 ) and [(η5‐C5HMe4)IrH(X)(PiPr3)] ( 25—27 ). The related dimethyl and monomethyl compounds [(η5‐C5HMe4)Ir(CH3)2(PiPr3)] ( 28 ) and [(η5‐C5HMe4)IrCH3(I)(PiPr3)] ( 29 ) have been obtained from the dihalide precursors 18 or 19 and CH3MgI in the molar ratio of 1:2 or 1:1, respectively.  相似文献   

14.
The complexes {bis[(2‐diphenylphosphanyl)phenyl] ether‐κ2P,P′}(η4‐norbornadiene)rhodium(I) tetrafluoridoborate, [Rh(C7H8)(C36H28OP2)]BF4, and {bis[(2‐diphenylphosphanyl)phenyl] ether‐κ2P,P′}[η4‐(Z,Z)‐cycloocta‐1,5‐diene]rhodium(I) tetrafluoridoborate dichloromethane monosolvate, [Rh(C8H12)(C36H28OP2)]BF4·CH2Cl2, are applied as precatalysts in redox‐neutral atomic‐economic propargylic CH activation [Lumbroso et al. (2013). Angew. Chem. Int. Ed. 52 , 1890–1932]. In addition, the catalytically inactive pentacoordinated 18‐electron complex {bis[(2‐diphenylphosphanyl)phenyl] ether‐κ2P,P′}chlorido(η4‐norbornadiene)rhodium(I), [RhCl(C7H8)(C36H28OP2)], was synthesized, which can form in the presence of chloride in the reaction system.  相似文献   

15.
Deprotonation of the readily available organometallic aldehyde derivative [(η4‐C7H7CHO)Fe(CO)3] ( 2 ) with NaN(SiMe3)2 in benzene solution at ambient temperature afforded the anionic formylcycloheptatrienyl complex Na[(η3‐C7H6CHO)Fe(CO)3] ( 3 ). The anion is fluxional in solution and displays a unique ambident reactivity towards electrophiles (MeI, Me3SiCl). New substituted [(η4‐RC7H6CHO)Fe(CO)3] and [(η4‐heptafulvene)Fe(CO)3] complexes have been identified as the products. Treatment of 3 with 0.5 equivalents of dimeric [(COD)RhCl]2 (COD = 1,5‐cyclooctadiene) afforded the functionalized Fe‐Rh cycloheptatrienyl complex [(μ‐C7H6CHO)(CO)3FeRh(COD)] ( 7 ) in up to 86 % yield. Carbonylation of 7 under an atmosphere of CO led to facile conversion to the heterobimetallic pentacarbonyl derivative [(μ‐C7H6CHO)(CO)3FeRh(CO)2] ( 8 ), which is also accessible in lower yield from the direct reaction of 3 with [Rh(CO)2Cl]2.  相似文献   

16.
The reactions of unsymmetric phosphorus ylides of the type [Ph2P(CH2)nPPh2?C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with C60 and M(dba)2 (M = Pd or Pt; dba = dibenzylideneacetone) are reported. Based on the various coordination modes of these ylides in complexation, the following new Pd/Pt–cyclopropa[60]fullerene complexes were obtained: P,C‐coordinated [(η2‐C60)Pd(κ2‐Y1)] ( 1 ) and [(η2‐C60)Pt(κ2‐Y1)] ( 2 ) complexes and P‐coordinated [(η2‐C60)Pd(Y2)2] ( 3 ) and [(η2‐C60)Pt(Y2)2] ( 4 ) complexes. These compounds were characterized using Fourier transform infrared, UV–visible and NMR (1H, 13C and 31P) spectroscopies and scanning electron microscopy. Furthermore, cytotoxicity studies showed that nanoparticles of these complexes can be used as non‐toxic labels for cellular imaging application. Also energy decomposition analysis results revealed that the percentage contribution of ΔEelec in total interaction energy is considerably larger than that of ΔEorb. Thus, in all complexes the (η2‐C60)M? (Y1) bond is considerably more electrostatic in nature than the (η2‐C60)? M(Y1) bond. Finally, by application of the Taguchi method for optimization of parameters in Suzuki–Miyaura reaction, the catalytic activity of Pd complexes 1 and 3 was investigated in the cross‐coupling reaction of various aryl chlorides with phenylboronic acid. According to analysis of variance results, solvent has the highest F value and it has high contribution percentage (36.75%) to the yield of Suzuki–Miyaura reaction.  相似文献   

17.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

18.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   

19.
The photo‐induced substitution of a CO ligand has been used to prepare the halfsandwich complexes (η3‐C3H5)V(CO)4[P(C7H7)3] ( 1 ), (η5‐C5H5)V(CO)3[P(C7H7)3] ( 2 ), (η7‐C7H7)V(CO)2[P(C7H7)3] ( 3 ), (η6‐C6H3Me3)Cr(CO)2[P(C7H7)3] ( 4 ), and (η5‐C5H5)Mn(CO)2[P(C7H7)3] ( 7 ), in which the olefinic phosphane is coordinated as a conventional two‐electron ligand through the lone pair of electrons at phosphorus. Some analogues, which are permethylated at the aromatic ring ( 2* , 4* , 7* ), were included for comparison. Subsequent photo‐elimination of another CO group from 4 or 7 converts the olefinic phosphane into a chelating four‐electron ligand, leading to (η6‐C6H3Me3)Cr(CO)[P(C7H7)22‐C7H7)] ( 5 ) and (η5‐C5H5)Mn(CO)[P(C7H7)22‐C7H7)] ( 8 ), respectively. The η2‐coordinated double bond in 5 and 8 can be displaced by trimethylphosphite to give (η6‐C6H3Me3)Cr(CO)[P(C7H7)3][P(OMe)3] ( 6 ) and (η5‐C5H5)Mn(CO)[P(C7H7)3][P(OMe)3] ( 9 ). The 31P and 13C NMR spectra of all complexes are discussed, and X‐ray structure analyses for 2 and 8 are presented. Prolonged irradiation of 7 and 8 led to a di(cycloheptatrienyl)phosphido‐bridged dimer, {(η5‐C5H5)Mn(CO)[P(C7H7)2]}2( 10 ).  相似文献   

20.
Abstract

Three novel chiral planar diferrocenylphosphine‐diamines 5 (a–c) were designed and synthesized starting with (s)‐(?)‐N,N‐dimethyl‐1‐ferrocenylethylamine‐1 [(S)‐1]. All new compounds were identified by 1H NMR and MS. The structure of chiral diferrocenylphosphine‐diamine 5c was determined by X‐ray crystallography. Single crystal X‐ray diffraction analysis reveals that the molecular structure of compound 5c [(η5‐C5H5)Fe{(η5‐C5H3)PPh2CH(CH3) N(CH2)2(CH2)2NCH(CH3)PPh2‐(η5‐C5H3)}Fe(η5‐C5H5)] is enantiomerically pure and crystallizes in the noncentrosymmetric P2(1)2(1)2(1) space group; it maintains “Z” shape and contains a piperazine hexahydrate ring bridge. The piperazine ring adopts a favored chair conformation and the chiral center C23 and C29 substituents in S‐configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号