首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the work presented in this paper was to test the concept that tryptic peptides may be used as analytical surrogates of the protein from which they were derived. Proteins in complex mixtures were digested with trypsin and classes of peptide fragments selected by affinity chromatography, lectin columns were used in this case. Affinity selected peptide mixtures were directly transferred to a high-resolution reversed-phase chromatography column and further resolved into fractions that were collected and subjected to matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The presence of specific proteins was determined by identification of signature peptides in the mass spectra. Data are also presented that suggest proteins may be quantified as their signature peptides by using isotopically labeled internal standards. Isotope ratios of peptides were determined by MALDI mass spectrometry and used to determine the concentration of a peptide relative to that of the labeled internal standard. Peptides in tryptic digests were labeled by acetylation with acetyl N-hydroxysuccinimide while internal standard peptides were labeled with the trideuteroacetylated analogue. Advantages of this approach are that (i) it is easier to separate peptides than proteins, (ii) native structure of the protein does not have to be maintained during the analysis, (iii) structural variants do not interfere and (iv) putative proteins suggested from DNA databases can be recognized by using a signature peptide probe.  相似文献   

2.
Previously, we reported that the matrix‐assisted laser desorption ionization spectrum of a peptide became reproducible when an effective temperature was held constant. Using a calibration curve drawn by plotting the peptide‐to‐matrix ion abundance ratio versus the peptide concentration in a solid sample, a peptide could be quantified without the use of any internal standard. In this work, we quantified proteins by quantifying their tryptic peptides with the aforementioned method. We modified the digestion process; e.g. disulfide bonds were not cleaved, so that hardly any reagent other than trypsin remained after the digestion process. This allowed the preparation of a sample by the direct mixing of a digestion mixture with a matrix solution. We also observed that the efficiency of the matrix‐to‐peptide proton transfer, as measured by its reaction quotient, was similar for peptides with arginine at the C‐terminus. With the reaction quotient averaged over many such peptides, we could rapidly quantify proteins. Most importantly, no peptide standard, not to mention its isotopically labeled analog, was needed in this method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A robust ultra high performance liquid chromatography with tandem mass spectrometry method at peptide level was established for measuring α‐lactalbumin in various dairy products. An isotope‐labeled winged peptide (VKKILDKVG*I NYW*L AHKALCSEKL) with extra amino acids of the sequence of signature peptide concatenated at each end as the internal standard was spiked in samples to participate in the whole tryptic digestion process. The peptide VG*I NYW*L AHK that resulted from the isotope‐labeled winged peptide was used as the final isotopically labeled internal standard of the α‐lactalbumin signature peptide (VGINYWLAHK) during the quantitative analysis. The contents of α‐lactalbumin in samples were calculated based on the equimolar relationship between the α‐lactalbumin protein and signature peptide. The optimized molar ratio of trypsin to protein (1:60) and enzymatic digestion time (5 h) could not only improve the digestion efficiency and reduce the cost, but also minimize the period of sample pretreatment. Considering the robustness of the current method using the isotopically labeled internal standard and acceptable measurement cost, its application may promote the development of nutrient investigation and quality control of α‐lactalbumin in dairy products. This protein analysis method might provide a new reference strategy for food analysis and quantitative protein analysis.  相似文献   

4.
Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N‐termini and the ε‐amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC‐ESI‐MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two‐fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The identification of hemoglobin (Hb) variants is usually performed by means of different analytical steps and methodologies. Phenotypic methods, such as gel electrophoresis and high performance liquid chromatography, are used to detect the different electrophoretic or chromatographic behaviors of hemoglobin variants in comparison to HbA0 used as a control. These data often need to be combined with mass spectrometry analyses of intact globins and their tryptic peptide mixtures. As an alternative to a 'step-by-step' procedure, we have developed a 'single step' approach for the identification of Hb variants present in biological samples. This is based on the microHPLC-ESI-MS/MS analysis of the peptide mixture generated by a tryptic digestion of diluted Hb samples and an in-house new database containing solely the variant tryptic peptide of known human Hb variants. The experimental results (full MS and MS/MS spectra) are correlated with theoretical mass spectra generated from our in-house-built variant peptide database (Hbp) using the SEQUEST algorithm. Simple preparation of samples and an automated identification of the variant peptide are the main characteristics of this approach, making it an attractive method for the detection of Hb variants at the routine clinical level. We have analyzed 16 different samples, each containing a different known variant of hemoglobin.  相似文献   

6.
Stable isotope dilution-based quantitative proteomics with intact labeled proteins as internal standards in combination with a bottom-up approach, i.e., with quantification on the peptide level, is an established method. To explore the technical precision of this approach, calmodulin-like protein 3 was prepared in non-labeled (light) and SILAC-type labeled (heavy) form by cell-free synthesis, mixed, digested with trypsin, and analyzed by UPLC-ESI-MS. In total, 16 light/heavy peptide pair ratios were determined. Pair-wise comparison of ratios of 12 peptides selected according to S/N ratios >50 revealed that the majority exhibited ratios, which were different at a high level of statistical significance (p < 0.001). HPLC-MALDI-MS ratio data confirmed this observation, thus excluding the ionization method as a source of the observed ratio differences. Variation of the digestion time from 0.25 to 4 h showed that the light/heavy ratios of most peptides decrease with time, indicating a kinetic isotope effect leading to preferred cleavage of light calmodulin-like protein 3. The subset of peptides with statistically identical ratios resulted in an average ratio with a RSD of 1.0 %. The light/heavy ratio calculated on the basis of these peptides probably provides the most accurate molar protein ratio.  相似文献   

7.
In‐gel digestion of gel‐separated proteins is a major route to assist in proteomics‐based biological discovery, which, however, is often embarrassed by its inherent limitations such as the low digestion efficiency and the low recovery of proteolytic peptides. For overcoming these limitations, many efforts have been directed at developing alternative methods to avoid the in‐digestion. Here, we present a new method for efficient protein digestion and tryptic peptide recovery, which involved electroblotting gel‐separated proteins onto a PVDF membrane, excising the PVDF bands containing protein of interest, and dissolving the bands with pure DMF (≥99.8%). Before tryptic digestion, NH4HCO3 buffer was added to moderately adjust the DMF concentration (to 40%) in order for trypsin to exert its activity. Experimental results using protein standards showed that, due to actions of DMF in dissolving PVDF membrane and the membrane‐bound substances, the proteins were virtually in‐solution digested in DMF‐containing buffer. This protocol allowed more efficient digestion and peptide recovery, thereby increasing the sequence coverage and the confidence of protein identification. The comparative study using rat hippocampal membrane‐enriched sample showed that the method was superior to the reported on‐membrane tryptic digestion for further protein identification, including low abundant and/or highly hydrophobic membrane proteins.  相似文献   

8.
低浓度甲醛对多肽和蛋白化学修饰的质谱研究   总被引:1,自引:0,他引:1  
采用基质辅助激光解析电离飞行时间质谱( MALDI-TOF MS)和纳升电喷雾四极杆飞行时间串联质谱( Nano-ESI -QTOF MS)技术,以标准肽段和流感病毒基质蛋白酶切肽段为模型,研究了甲醛对蛋白质和多肽主链的修饰作用。采用与实际病毒灭活过程一致的实验条件(4℃,0.025%(V/V)福尔马林(37%(w/w)甲醛溶液)处理72 h),进行甲醛与多肽的化学反应。结果表明,在实验条件下,甲醛能与标准肽段N端的氨基反应生成羟甲基加合物,再发生缩合反应生成亚胺,形成+12 Da的产物。此外,甲醛还能与标准肽段中的精氨酸、赖氨酸的侧链发生反应,生成+12 Da的反应产物。对流感病毒基质蛋白的酶切肽段与甲醛的反应的质谱分析结果显示,多数的肽段都生成了+24 Da的产物,质量的增加来源于肽段N端氨基(+12 Da)和C端精氨酸或赖氨酸的侧链(+12 Da)的贡献。此外,还观察到有一个漏切位点的肽段生成了+36 Da的产物。本研究结果表明,在实验条件下,低浓度甲醛主要与肽段和蛋白的N 端氨基,以及精氨酸和赖氨酸侧链发生反应。本研究为分析低浓度甲醛与蛋白质的反应产物提供了有效的质谱分析方法和解谱依据。  相似文献   

9.
Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.  相似文献   

10.
Metal‐Coded Affinity Tags (MeCAT) reagents were devised for the absolute quantification of labeled proteins and peptides using inductively coupled plasma mass spectrometry (ICP‐MS). After the recent publication of quantification approaches for digested proteins, this work presents a multidimensional strategy for the application of MeCAT to samples which require higher chromatographic resolution. Two‐dimensional separations based on strong cation exchange (SCX) and reversed‐phase (RP) chromatography, were used for the quantification of lysozyme, bovine serum albumin and transferrin after tryptic digestion. The elution protocols were optimized to improve the resolution of the MeCAT‐labeled peptides which led to faster elutions in SCX and longer retention times in RP compared with unlabeled peptides. The optimized method provided enough resolution for the samples analyzed. Peptides losses during the whole procedure were studied. Although recoveries of greater than 90% were found in the RP dimension, important global losses in the two‐dimensional offline approach forced us to use specific internal standards, in this case MeCAT‐labeled standard peptides. External calibration and label‐specific isotope dilution analysis (IDA) were tested and compared as possible quantification techniques. While both techniques showed accurate and precise determinations, the label‐specific IDA technique resulted in more straightforward measurements and more affordable external calibrations. Finally, simultaneous quantification of three different samples labeled with different lanthanides was successfully performed demonstrating the potential of MeCAT combined with ICP‐MS for multiplexing. Electrospray ionization mass spectrometry techniques provided the structural information needed for the identification of the labeled species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Vitellogenin (VTG) is a protein produced by the liver of oviparous animals. It is being used as a biomarker for exposure to endocrine disruptors in many species. Rainbow trout Vtg has recently been sequenced by the conventional cDNA nucleotide approach. We focused on protein characterization of the intact protein and its derived tryptic and cyanogen bromide peptides by matrix-assisted laser desorption/ionisation and electrospray ionisation mass spectrometry. The molecular mass of the intact protein was found to be 183127 Da. A large number of unidentified peptide ions encourage further structural analysis to propose possible sequence variants and post-translational modifications.  相似文献   

12.
Mass spectral analysis of tryptic digests of cross-linked proteins offers considerable promise as a simple technique to probe protein structure and study protein-protein interactions. We describe the use of a 1:1 mixture of isotopically labeled and unlabeled cross-linkers, disuccinimidyladipate (DSA) and dimethyladipimidate (DMA), to enhance visualization of cross-linked peptides in a tryptic digest. Optimized intramolecular reactions of cytochrome c and ribonuclease A (RNase A) with DSA yielded an average of two cross-links per protein molecule. After digestion of the cross-linked cytochrome c with trypsin and analysis by liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption/ionization (MALDI), eight modified peptides, five cross-linked and two end-capped, were detected by virtue of their doublet character. An eighth modified peptide's identity remained ambiguous because of its inability to fragment. The lysine-lysine distance constraints obtained are discussed in the context of the known NMR and X-ray structures of cytochrome c. Analysis of cross-linked RNase A by LC/MS and MALDI yielded nine modified peptides, four of which were modified twice, as indicated by the isotopic triplets. Although seven of these peptides contained cross-links, few distance constraints were gained due to the fact that the cross-linked products were variations of modification of the same three lysine residues.  相似文献   

13.
Proteomics requires an optimized level of sample-processing, including a minimal sample-processing time and an optimal peptide recovery from protein digests, in order to maximize the percentage sequence coverage and to improve the accuracy of protein identification. The conventional methods of protein characterization from one-dimensional or two-dimensional gels include the destaining of an excised gel piece, followed by an overnight in-gel enzyme digestion. The aims of this study were to determine whether: (1) stained gels can be used without any destaining for trypsin digestion and mass spectrometry (MS); (2) tryptic peptides can be recovered from a matrix-assisted laser desorption/ionization (MALDI) target plate for a subsequent analysis with liquid chromatography (LC) coupled to an electrospray ionization (ESI) quadrupole ion trap MS; and (3) an overnight in-gel digestion is necessary for protein characterization with MS. These three strategies would significantly improve sample throughput. Cerebrospinal fluid (CSF) was the model biological fluid used to develop these methods. CSF was desalted by gel filtration, and CSF proteins were separated by two-dimensional gel electrophoresis (2DGE). Proteins were visualized with either silver, Coomassie, or Stains-All (counterstained with silver). None of the gels was destained. Protein spots were in-gel trypsin digested, the tryptic peptides were purified with ZipTip, and the peptides were analyzed with MALDI and ESI MS. Some of the samples that were spotted onto a wax-coated MALDI target plate were recovered and analyzed with ESI MS. All three types of stained gels were compatible with MALDI and ESI MS without any destaining. In-gel trypsin digestion can be performed in only 10-60 min for protein characterization with MS, the sample can be recovered from the MALDI target plate for use in ESI MS, and there was a 90% reduction in sample-processing time from overnight to ca. 3 h.  相似文献   

14.
Al-Lawati H  Watts P  Welham KJ 《The Analyst》2006,131(5):656-663
A highly efficient protein digestion device has been fabricated using commercially available immobilized trypsin on agarose beads, packed into a silica capillary and connected either directly to an electrospray mass spectrometer via a 'microtight T' connector, from which aqueous acetic acid (0.2%) was pumped, or via a monolithic column connected to the mass spectrometer ion source. Six proteins with molecular mass ranging from 2848 to 77703 Da were digested completely using this system. In the second set of experiments a short monolithic separation column was placed after the immobilized trypsin capillary and partial separation of the generated peptides was obtained. The detection limits were increased from the micromol to pmol range by utilization of this separation column. Gradient elution, using a binary HPLC pump and a flow splitter, was used to optimize the peptide separation. This provided significantly enhanced resolution of the tryptic peptides but increased the analysis time to 30 minutes.  相似文献   

15.
Polyacrylamide gel electrophoresis is widely used for protein separation and it is frequently the final step in protein purification in biochemistry and proteomics. Using a commercially available amine-reactive isobaric tagging reagent (iTRAQ) and mass spectrometry we obtained reproducible, quantitative data from peptides derived by tryptic in-gel digestion of proteins and phosphoproteins. The protocol combines optimized reaction conditions, miniaturized peptide handling techniques and tandem mass spectrometry to quantify low- to sub-picomole amounts of (phospho)proteins that were isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immobilized metal affinity chromatography (FeIII-IMAC) was efficient for removal of excess reagents and for enrichment of derivatized phosphopeptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Phosphopeptide abundance was determined by liquid chromatography/tandem mass (LC/MS/MS) using either MALDI time-of-flight/time-of-flight (TOF/TOF) MS/MS or electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS instruments. Chemically labeled isobaric phosphopeptides, differing only by the position of the phosphate group, were distinguished and characterized by LC/MS/MS based on their LC elution profile and distinct MS/MS spectra. We expect this quantitative mass spectrometry method to be suitable for systematic, comparative analysis of molecular variants of proteins isolated by gel electrophoresis.  相似文献   

16.
Isolelectric focusing (IEF) of proteins on immobilized pH gradient (IPG) strips is an integral part of two-dimensional (2D) electrophoresis-based proteomics. Proteins can be effectively analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) on the intact strip itself, leading to the creation of a virtual 2D map giving pI and MW information, bypassing the second dimension SDS-PAGE. Further, trypsin digestion of proteins on the strip can significantly aid the identification of IPG-separated proteins. However, the small size of the peptides leads to diffusion along and outside the gel matrix. In this study, we describe a simple spray-based procedure to perform 'on-strip' trypsin digestion of proteins embedded in IPG strips. Examination of intact myoglobin and its tryptic peptides shows that post-digestion diffusion of tryptic peptides is significantly minimized using this approach.  相似文献   

17.
Although data-dependent LC-MS-MS with database searching has become au courant for identifying proteins, the technique is constrained by duty-cycle inefficiency and the inability of most tandem mass analyzers to accurately measure peptide product ion masses. In this work, a novel approach is presented for simultaneous peptide fragmentation and accurate mass measurement using in-source collision-induced dissociation (CID) on electrospray ionization (ESI)-time-of-flight (TOF) MS. By employing internal mass reference compounds, mass measurement accuracy within +/-5 ppm for tryptic peptide precursors and +/-10 ppm for most sequence-specific product ions was consistently achieved. Analysis of a complex solution containing several digested protein standards did not adversely affect instrument performance.  相似文献   

18.
Vitellogenin (VTG) is a protein produced by the liver of oviparous animals in response to circulating estrogens. In the plasma of males and immature females, VTG is undetectable. VTG has been used as a biomarker for exposure to endocrine disruptors in many species. In the present study, characterization of intact Atlantic salmon VTG was effected using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). Tryptic digest peptides were analyzed by MALDI ToF MS to obtain a peptide mass fingerprint. De novo sequencing of the tryptic peptides used low-energy collisionally-induced dissociation (CID) in an electrospray ionization quadrupole-ToF orthogonal hybrid mass spectrometer (ESI Q-ToF MS/MS). The interpretation of the product-ion spectra obtained from the ESI Q-ToF MS/MS was done by Lutefisk, a computer-based software algorithm. The molecular mass of the intact protein was found to be 187335 Da. A total of 14 tryptic peptides were sequenced and compared with the complete rainbow trout VTG and the partial Atlantic salmon VTG sequences found in the Swiss-Prot database. De novo sequencing by CID MS/MS of 11 Atlantic salmon tryptic digest peptides with selected precursor ions at m/z 788.24, 700.20, 794.75, 834.31, 889.28, 819.79, 865.27, 843.81, 572.20, 573.66 and 561.68 showed high homology with the known sequence of rainbow trout VTG. The last two precursor peptide ions, found at m/z 573.66 and m/z 561.68, also specifically matched the known portion of the Atlantic salmon VTG sequence. Finally, three tryptic precursor peptide ions found at m/z 795.18, 893.28 and 791.05, provided product-ion spectra, which were exclusive to the unsequenced portion of the Atlantic salmon VTG.  相似文献   

19.
Accelerated tryptic digestion of a therapeutic protein including microwave irradiation and thermal transfer by convection at 60 °C and 37 °C was investigated. An analytical setup was devised to follow the protein digestion rate using 1D gel electrophoresis and liquid chromatography coupled a triple quadrupole linear ion trap mass spectrometer. The formation kinetic of its tryptic peptides was monitored in the selected monitoring mode (LC-SRM/MS). Different digestion end points (e.g. 2, 5, 10, 15, 30 and 60 min) as well as an overnight digestion were tested using a therapeutic human monoclonal antibody (mAb) with the goal of its LC-SRM/MS quantification in human plasma. The peptides from the human mAb were generated at different rates and were classified into three categories: (1) the fast forming peptides, (2) the slow forming peptides and (3) the peptides degrading over time. For many monitored peptides, a heating temperature of 37 °C with a 750 rpm mixing applied for at least 30 min provided equivalent results to microwave-assisted digestion and generally allowed the achievement of an equivalent peptide concentration as an overnight digestion carried out at 37 °C. The disappearance of the protein of the heavy and light chains can be monitored by 1D gel electrophoresis but was found not to be representative of the final tryptic peptide concentrations. For quantitative purposes a stable isotope labeled version (13C4, 15N1) of the therapeutic protein was used. The labeled protein as internal standard was found to be very efficient to compensate for incomplete digestion or losses during sample preparation.  相似文献   

20.
This paper describes a procedure for quantitative proteomics that selects peptides containing both cysteine and histidine residues from tryptic digests of cell lysates. Cysteine-containing peptides were selected first by covalent chromatography using thiol disulfide exchange. Following the release of cysteine-containing peptides from the covalent chromatography column with reductive cleavage, histidine-containing peptides were captured by passage through an immobilized metal affinity chromatography column loaded with copper. Quantification was achieved in a four-step process involving (i) differential labeling of control and experimental samples with isotopically differing forms of succinic anhydride, (ii) mixing the two globally labeled samples, (iii) fractionating the labeled peptides by reversed-phase liquid chromatography, and (iv) determining the isotope ratio in individual peptides by mass spectrometry. The results of these studies indicate that by selecting peptides containing both cysteine and histidine, the complexity of protein digests could be substantially reduced. Up-regulated proteins from plasmid bearing Escherichia coli that had been induced with isopropyl beta-thiogalacto-pyranoside were identified and quantified by the global internal standard technology (GIST) described above. Database searches were greatly simplified because the number of possible peptide candidates was reduced more than 95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号