首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have fabricated a LPG and butane sensor whose sensitive element is a nanosize In2O3:Ga2O3 (96:4 weight %) film covered with a thin palladium catalytic layer. Technology of deposition of these films on a glassceramic substrate by the method of rf magnetron sputtering was elaborated. The surfaces of fabricated films were studied with use of a scanning electron microscope and the thickness of films was measured. The sensitivity of sensors based on the glassceramic/In2O3:Ga2O3 (96:4 weight %)/Pd structure depending on the thickness and sizes of film grains was studied. We revealed technological regimes of sputtering providing fabrication of films with the best parameters.  相似文献   

2.
The effect heat treatment has on the electrotransport mechanisms in films of ZnO and In2O3, and in a multilayer (In2O3/ZnO)83 structure obtained via ion-beam sputtering, is studied. It is shown that there is a mechanism of weak electron localization in the In2O3 and (In2O3/ZnO)83 samples. The relaxation processes that occur during the heat treatment of In2O3 films are found to increase the length of elastic electron scattering, but to reduce this parameter in multilayer heterostructures.  相似文献   

3.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

4.
The effects of oxygen content in the sputtering gas on the crystallographic and optoelectronic properties of 210 nm-thick Zr–doped In2O3 (Zr–In2O3) films by rf magnetron sputtering were initially studied. The results of X-ray diffraction show that the Zr–In2O3 films grown on glass substrates exhibit mixed crystallographic orientations. Moreover, the Zr–In2O3 film grown in an Ar atmosphere promotes the appearance of crystallographic orientation of (222). The surface of the Zr–In2O3 film becomes rougher as the oxygen content in the sputtering gas decreases; the current images obtained by conductive atomic force microscopy reveal that the surfaces of the Zr–In2O3 films exhibit a distribution of coexisting conducting and nonconducting regions, and that the area of the nonconducting surface increases with the oxygen content in the sputtering gas. The resistivity is minimized to 3.51×10−4 Ω cm when the Zr–In2O3 film is grown in an Ar atmosphere and the average transmittance in the visible light region is ∼85%. The optical band gap decreases as the oxygen content in the sputtering gas increases.  相似文献   

5.
Thin films of ZnGa2O4:Mn2+ were deposited on quartz substrates using an rf magnetron sputtering technique. The sputtering target, ZnGa2O4 doped with 2 at. % manganese, was synthesized by a high temperature solid state reaction. Two different dopant sources were used to incorporate the dopant ions into the target, namely, manganese acetate and manganese oxide. The structural and optical properties of the thin films were studied using XRD, PL and transmission spectra. Polycrystalline ZnGa2O4:Mn with a spinel structure could be grown at an optimized substrate–target distance even at room temperature. No luminescence was observed in the as-deposited films grown using (CH3COO)2Mn as the dopant source in the target. Substrate heating or post-deposition annealing in the reducing ambient didn’t impart any luminescence to the films, ruling out the possibility of Mn2+ incorporation in the films. However, when using MnO as the manganese source in the target, the as-deposited films exhibited green photoluminescent emission (peak maximum at 508 nm) for substrate temperatures at and above 500 °C. This suggests that, in thin films, Mn incorporation and subsequent luminescent outcome is strongly influenced by the dopant source, which is quite different from the bulk phosphor behavior. PACS 81.15.Cd; 78.55.-m; 85.60.-q  相似文献   

6.
This is an IR spectroscopic study of the interaction of CO with In2O3 and the nanocomposite In2O3-Au. A mechanism for low-temperature detection of CO on nanocomposite In2O3-Au can be determined from these data. This process includes catalytic oxidation of CO through formation of intermediate complexes involving hydroxyl groups of In2O3.  相似文献   

7.
The effect of additives of cobalt and zirconium oxides on the conductivity of nanostructured composites based on indium oxide is studied. It is shown that addition of up to 20 wt % ZrO2 to In2O3 leads to a sharp decrease in the conductivity of the composite. For the Co3O4?In2O3 system, the conductivity decreases up to a Co3O4 content of 60 wt %, after which it increases. At a Co3O4 content in the Co3O4?In2O3 system of up to 60 wt %, n-type conduction takes place, changing to p-type at 80 to 100 wt % Co3O4. Zirconium oxide exhibits practically no n-type conduction, so electric current in the ZrO2?In2O3 system flows through In2O3 nanocrystals, i.e., n-type conduction takes place. Possible causes of the observed effects are considered.  相似文献   

8.
We have demonstrated pulsed laser deposition of Nd-doped gadolinium gallium garnet on Y3Al5O12 by the simultaneous ablation of two separate targets of Nd:Gd3Ga5O12 (GGG) and Ga2O3. Such an approach is of interest as a method of achieving stoichiometry control over films whilst the growth parameters are kept constant and optimal for high quality crystal growth. We show here how the stoichiometry and resultant lattice parameter of a film can be controlled by changing the relative deposition rates from the two targets. Films have been grown with enough extra Ga to compensate for the deficiency that commonly occurs when depositing only from a GGG target. We have also grown crystalline GGG films with an enriched Ga concentration, and this unconventional approach to film stoichiometry control may have potential applications in the fabrication of films with advanced compositionally graded structures.  相似文献   

9.
The effect of Co3O4 and ZrO2 additives on the sensory response of In2O3-based nanostructured composites to H2 and CO is studied. It is shown that the addition of small amounts of Co3O4 or ZrO2 to In2O3 leads to a sharp increase in the sensory response to hydrogen. The maximum sensory response of the ZrO2?In2O3 composite to 1100 ppm of hydrogen increases from 80 to 270 as the ZrO2 content changes 0 to 20 wt %. The response to CO varies only slightly. For Co3O4?In2O3 composites, the maximum response to H2 and CO increases with the Co3O4 content within 0?10 wt %. A further increase in the Co3O4 content leads to a significant decrease in the response, with composites containing ~60 wt % Co3O4 being characterized by a very low efficiency. In the Co3O4?In2O3 system with a content of up to 60 wt % Co3O4, electronic conduction is realized, which changes to hole conduction at Co3O4 within 80?100 wt %. In the ZrO2?In2O3 system, electric current flows through In2O3 nanocrystals, i.e., n-type conduction takes place. Possible reasons for the observed effects are discussed.  相似文献   

10.
Epitaxial films of composition (Gd,Nd)3Ga5O12 or (Gd,Y,Nd)3Ga5O12 with a neodymium content varying from 0.3 to 15 at. % are grown by liquid-phase epitaxy from a supercooled PbO-B2O3-based solution melt on Gd3Ga5O12(111) substrates. The optical absorption spectra of the epitaxial films grown are measured in the wavelength range 0.2–1.0 µm. The results of interpreting the absorption bands observed in the spectra are used to construct the energy level diagrams of Nd3+ and Gd3+ ions in the matrices of the epitaxial films.  相似文献   

11.
CoFe2O4 (CFO) thin film with highly (111)-preferential orientation was first deposited on the silicon substrate by a pulsed-laser deposition, and then Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited with different oxygen pressures to form the bilayer CFO/PZT nanocomposite thin films. X-ray diffraction showed that the PZT preferential orientation was strongly dependant on the oxygen pressure. The smooth film surface was obtained after depositing the CFO and PZT layers. The bilayer thin films exhibit good ferromagnetic and ferroelectric properties, and a low leakage current density of 0.004 μA/cm2 at 50 kV/cm. The leakage current density curves show loops for the electric polarized field when the electric field reverses. PACS 77.84.Lf; 75.80+q; 81.05.Zx; 81.15.Fg  相似文献   

12.
Layered cobalt oxides Ca3Co4O9 thin films have been grown directly on c-cut sapphire substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations show that the deposited films present the expected monoclinic structure and a texture along the direction perpendicular to the Al2O3(001) plane. The Ca3Co4O9 structure presents six variants in the film plane. Rutherford backscattering spectroscopy shows that the films are stoichiometric and that the film thickness agrees with the nominal value. The susceptibility χ of the films, recorded along the c-axis of the substrate, after field cooling and zero field cooling in an applied field of 1 kOe shows two magnetic transitions at 19 and 370 K which agree well with previous findings on single crystal samples. In turn, at low temperature (5 K), the magnetization curve along the c-axis exhibits coercive field and remanent magnetization much smaller than those reported for bulk samples, which can be related to the influence of structural variants and structural defects.  相似文献   

13.
β-Ga2O3 nanowires have been synthesized using Ga metal and H2O vapor at 800 °C in the presence of Ni catalyst on the substrate. Remarkable reduction of the diameter and increase of the length of the Ga2O3 nanowires are achieved by separation of Ga metal and H2O vapor before they reach the substrate. Transmission electron microscopy analyses indicate that the β-Ga2O3 nanowires possess a single-crystalline structure. Photoluminescence measurements show two broad emission bands centered at 290 nm and 390 nm at room temperature. Received: 27 June 2002 / Accepted: 7 October 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +886-6/234-4496, E-mail: wujj@mail.ncku.edu.tw  相似文献   

14.
In2O3 particles with different morphology were controllably synthesized on silicon substrates by thermal evaporation of In grains at 900 °C. The structure and morphology of the In2O3 particles were evaluated using X-ray diffraction, and scanning and transmission electron microscopies. The evolution in shapes as the ratio of {100} relative to {111} increases is clearly observed. The photoluminescence spectrum of the obtained In2O3 structures exhibits UV emission centered at about 378 nm and wide-band emission covering the green and orange regions with three peaks around 525, 572, and 604 nm. PACS 81.05.Hd; 81.07.Bc; 81.16.-c; 61.46.-w; 81.40.Gh  相似文献   

15.
ZnGa2O4 thin-film phosphors have been grown on Si(100), Al2O3(0001) and MgO(100) substrates using pulsed laser deposition. The structural characterization was carried out on a series of ZnGa2O4 films grown on various substrates under various substrate temperatures and oxygen pressures. The films grown on these substrates not only have different crystallinity and surface morphology, but also different Zn/Ga composition ratio. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular the stoichiometry ratio of Zn/Ga and the kind of substrate. The variation of Zn/Ga in the films also depends on not only the oxygen pressure but also the substrate temperature during deposition. The PL properties of pulsed laser deposited ZnGa2O4 thin films have indicated that Al2O3(0001) and MgO(100) are promising substrates for the growth of high-quality ZnGa2O4 thin films and that the luminescence brightness depends on the substrate. The luminescence spectra show a broad band extending from 350 to 600 nm and peaking at 460 nm. Received: 11 July 2002 / Accepted: 31 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +82-51-6206356, E-mail: jhjeong@pknu.ac.kr  相似文献   

16.
A discussion of optical properties of mixed oxides In2O3—SnO2 system is presented. Film thickness, substrate temperature, composition (in molar %) and annealing have a profound effect on the structure and optical properties of these films. Initially the increase in band gap with the increase of SnO2 content in In2O3 is due to the increase in carrier density as a result of donor electrons from tin. The decrease in band gap above the critical Sn content is caused by the defects formed by Sn atoms, which act as carrier traps rather than electron donors. The increase in band gap with film thickness is caused by the increase in free carrier density which is generated by (i) Sn atom substitution of In atom, giving out one extra electron and (ii) oxygen vacancy acting as two electrons donor. The decrease in band gap with substrate temperature and annealing is due either to the severe deficiency of oxygen, which deteriorate the film properties and reduce the mobility of the carriers, or to the formation of indium species of lower oxidation state (In2+).  相似文献   

17.
71Ga magic-angle spinning (MAS) nuclear magnetic resonance (NMR) has been used to characterize the structural evolution of nanocrystalline Ga2O3 samples prepared by sol-gel and ball-milling techniques. 29Si and 27Al MAS NMR have also been used to characterize silica and alumina Zener pinning phases. 71Ga NMR parameters are reported for the α- and β-Ga2O3 phases, and more tentatively for the δ-Ga2O3 phase. By simulating the octahedrally coordinated gallium NMR line of β-Ga2O3 using Gaussian distributions in χQ, the extent of disorder in the Ga2O3 crystallites has been quantified. The ball-milled samples contain much more inherent disorder than the sol-gel samples in the nano-phase, which was observed from simulations of the 71Ga MAS NMR spectra. The silica pinning phase produced highly crystalline and densely aggregated nanocrystalline Ga2O3, as well as the smallest nanocrystal sizes. Authors' address: Mark E. Smith, Department of Physics, University of Warwick, Coventry CV4 7AL, UK  相似文献   

18.
We studied the structure and magnetic properties of porous multilayered Co/Pd films deposited on the templates of anodized Al2O3 with a specific surface morphology that is characterized by a cellular–porous structure with several pores inside each cell. X-ray diffraction analysis and reflectometry are used to study the peculiarities of the formation of phases in deposited films. The effect of morphological features of porous Co/Pd films on their magnetoanisotropic properties and magnetization reversal processes (magnetization reversal mechanisms, domain structure of films, and coercive field H c ) is revealed by SQUID magnetometry and magnetic force microscopy.  相似文献   

19.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

20.
X-ray photoelectron spectroscopy and electronic structure calculations in the framework of the coherent potential approach show that impurity Fe3+ ions substituting In in iron-doped In2O3 indium oxide(III) are in a paramagnetic state in the absence of oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号