首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The modification of boron-doped diamond powder with metallic oxides using the sol–gel method to prepare high area and very stable electrodes for the methanol oxidation reaction is reported here. The catalyst clusters thus prepared are irregularly distributed on the BDD powder surface having sizes varying between 500 nm and 5 μm and formed by the agglomeration of many nanoparticles. Electrochemical studies in acid media demonstrate that the deposited particles have a good electrical contact with the diamond powder surface and high purity. Moreover, the use of the sol–gel method on a BDD powder substrate leads to the formation of metallic and metallic oxides deposits of the desired composition. The electrocatalyst composite prepared in this manner (Pt–RuOx/BDD powder) shows an excellent activity for methanol oxidation presenting an onset potential 20 mV lower than that observed on a Pt–Ru/C commercial catalyst, probably due to the ruthenium oxide contribution to the overall catalytic activity.  相似文献   

2.
Platinum/ruthenium nanoparticles were decorated on carbon nanotubes (CNT) in supercritical carbon dioxide, and the nanocomposites were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM images show that the particles size is in the range of 5-10 nm, and XRD patterns show a face-centered cubic crystal structure. Methanol electrooxidation in 1 M sulfuric acid electrolyte containing 2 M methanol were studied onPtRu/CNT (Pt, 4.1 wt%; Ru, 2.3 wt%; molar ratio approximately Pt/Ru = 45:55) catalysts using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. All the electrochemical results show that PtRu/CNT catalysts exhibit high activity for methanol oxidation which resulted from the high surface area of carbon nanotubes and the nanostructure of platinum/ruthenium particles. Compared with Pt/CNT, the onset potential is much lower and the ratio of forward anodic peak current to reverse anodic peak current is much higher for methanol oxidation, which indicates the higher catalytic activity of PtRu/CNT. The presence of Ru with Pt accelerates the rate of methanol oxidation. The results demonstrated the feasibility of processing bimetallic catalysts in supercritical carbon dioxide for fuel cell applications.  相似文献   

3.
In this paper, we reported an improved process for the preparation of PtRu/CNTs, which involves the adsorption of Pt and Ru ions on CNTs in aqueous solution and the reduction of the adsorbed Pt and Ru ions on CNTs in ethylene glycol. The surface morphology, structure, and compositions of the prepared catalyst were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive spectrometer. TEM observation showed that the particles size of the prepared PtRu alloy was in the range of 2–5 nm, XRD patterns confirmed a face-centered cubic crystal structure. The activity and stability of the prepared catalyst toward methanol oxidation were studied in 0.5 M H2SO4 + 1 M CH3OH solution by cyclic voltammetry, chronoamperometry, and chronopotentiometry. The electrochemical results showed that the prepared catalyst exhibited higher activity and stability toward methanol oxidation than commercial PtRu/C with the same loading amount of Pt and Ru.  相似文献   

4.
We have developed efficient electrocatalysts for methanol oxidation using new synthetic method facilitating deposition of Pt–Ru very thin nanoplatelets on carbon nanoparticles The method involves oxidation of carbon support, adsorption of Pb2+, its reduction and galvanic displacement of Pb0 by Pt and/or Ru. The Pt mass activity of this catalyst is about 10 times higher than that of the commercial Pt–Ru/C. The catalyst with the 1:1 Pt/Ru ratio displayed the highest methanol oxidation activity per surface Pt atom. Our results demonstrate the new synthetic method that yields the catalyst with potential for solving the problem of high Pt loading in direct methanol fuel cell anodes.  相似文献   

5.
Polyamidoamine (PAMAM) dendrimers has been anchored on functionalized carbon nanofibers (CNF) and supported Pt–Ru nanoparticles have been prepared with NaBH4 as a reducing agent. The samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. It was shown that Pt–Ru particles with small average size (2.6 nm) were uniformly dispersed on PAMAM/CNF composite support and displayed the characteristic diffraction peaks of Pt face-centered cubic structure. The electrocatalytic activities of the prepared-composites (20% Pt–Ru/PAMAM-CNF) were examined by using cyclic voltammetry for oxidation of methanol. The electrocatalytic activity of the CNF-based composite (20% Pt–Ru/PAMAM-CNF) electrode for methanol oxidation showed better performance than that of commercially available Johnson Mathey 20% Pt–Ru/C catalyst. The results imply that CNF-based PAMAM composite electrodes are excellent potential candidates for application in direct methanol fuel cells.  相似文献   

6.
We explore oxidative electrocatalytic properties of a system consisting of bimetallic Pt/Ru nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. The nanotubular TiO2 layers consist of individual tubes of 100 nm diameter, 500 nm length and 15 nm wall thickness. This nanotubular TiO2 support provides a high surface area and it significantly enhances the electrocatalytic activity of Pt/Ru for methanol oxidation (relative to the performance of Pt/Ru at the same loading but immobilized on a conventional compact TiO2 support). Annealed to anatase, the TiO2 nanotubular support exhibits even higher enhancement effect during electrooxidation of methanol than when used in the “as-formed” amorphous structure. The overall electrocatalytic activity of the system can be further increased by illumination with UV-light (wavelength 325 nm).  相似文献   

7.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

8.
Pt-Ru alloy is a bimetallic catalyst most commonly used in the direct methanol fuel cell (DMFC). In this paper, a new process to synthesize an unsupported Pt-Ru colloid has been introduced. The characteristics of synthesized nanoparticles were identified by XRD, TEM/EDX, and SEM, and it shows that Ru atoms are incorporated into the Pt fcc structure and the well-dispersed particles (diameter approximately 4 nm) possess a Pt-rich feature. This catalyst shows a hydrophobic characteristic which can adsorb very well on the hydrophobic-treated carbon paper or carbon cloth without the need of Nafion. Accordingly, this method can avoid particle agglomeration, and the synthesized catalyst demonstrates strong adsorption with carbon paper. In addition, this colloid-type Nafion-free catalyst was measured via linear sweep voltammetry (LSV) and exhibited electrochemical activity for methanol oxidation comparable to the commercial one with Nafion binding.  相似文献   

9.
A simple, scalable route for the generation of mesoporous Rh particles by chemical reduction on self-assembled block-copolymer micelle templates was reported recently (Nat. Commun. 2017 , 8, 15581). Here, this concept is extended to generate mesoporous PtCu alloy nanoparticles through the same approach. The PtCu alloy particles possess high-surface-area nanoporous architectures and good chemical stability for applications in catalysis. Both the composition and diameter of the bimetallic PtCu nanoparticles can be controlled by adjusting the amount of precursor in the reaction, which affects the electrochemical properties of the material. The combination of the mesoporous structure with the synergistic bimetallic electronic effects of PtCu gives rise to enhanced activity for the catalytic oxidation of methanol compared with commercial Pt black.  相似文献   

10.
A novel synthesis route, concerning in situ interfacial polymerization of pyrrole on carbon black and following co-deposition of Pt and Fe on polypyrrole–carbon support, is developed to prepare the bimetallic Pt–Fe/polypyrrole–carbon catalyst. In this synthesis process, ferrous precursor simultaneously functions as an oxidant for the polymerization of pyrrole. The Pt–Fe/polypyrrole–carbon catalyst shows improved catalytic activity towards methanol oxidation compared to commercial Pt/C catalyst, which may be of great potential in direct methanol fuel cells.  相似文献   

11.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

12.
High metal-loading Pt/C electrocatalysts are important for the fabrication of thin-layered membrane electrode assemblies (MEAs). However, the preparation of high-loading Pt catalysts with a narrow size distribution of nanoparticles remains a challenge. Herein, ordered mesoporous carbon (OMC) with large mesopores (~15 nm) and a high surface area (1316.0 m2 g?1) was fabricated using a SiO2 nanosphere array as a template. This material was developed to support a high loading of Pt nanoparticles (60 wt%) and was then used as an electrocatalyst for the methanol oxidation reaction (MOR). The prepared Pt/OMC contains Pt nanoparticles with an average size of ~1.9 nm that are uniformly dispersed on the mesoporous walls of the OMC. The Pt/OMC catalyst exhibits smaller Pt nanoparticle size, greater Pt dispersion, larger specific electrochemically active surface area (ECSA), and higher electrocatalytic activity for the MOR than the carbon black (Vulcan XC-72R)-supported Pt and the commercial Pt/C catalysts.  相似文献   

13.
The structural and catalytic properties of SiO2- and TiO2 -supported Pt-Au bimetallic catalysts prepared by coimpregnation were compared with those of samples of similar composition synthesized from a Pt2Au4(C{triple bond}CBut)8 cluster precursor. The smallest metal particles were formed when the bimetallic cluster was used as a precursor and TiO2 as the support. FTIR data indicate that highly dispersed Au crystallites in these samples, presumably located in close proximity to Pt, are capable of linearly coordinating CO molecules with a characteristic vibration observed at 2111 cm(-1). The cluster-derived Pt2Au4/TiO2 samples were the only ones exhibiting low-temperature CO oxidation activity, indicating that both the high dispersion of Au and the nature of the support are important factors affecting the catalytic activity for this system.  相似文献   

14.
The catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support. The clusters remained weakly bonded to the SiO(2) surface and could be extracted with CH(2)Cl(2) without any significant changes in their structure. Subsequent heating in H(2) led to complete decarbonylation of the supported clusters at approximately 350 degrees C and the formation of Pt-Fe nanoparticles with sizes in the 1-2 nm range, as indicated by HRTEM imaging. A few larger nanoparticles enriched in Pt were also observed, indicating that a small fraction of the deposited clusters were segregated to the individual components following the hydrogen treatment. A higher degree of metal dispersion and more homogeneous mixing of the two metals were observed during HRTEM/XEDS analysis with the cluster-derived samples, as compared to a PtFe/SiO(2) catalyst prepared through a conventional impregnation route. Furthermore, the cluster-derived PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were more active than Pt/SiO(2) and the conventionally prepared PtFe/SiO(2) sample for the oxidation of CO in air. However, substantial deactivation was also observed, indicating that the properties of the Pt-Fe bimetallic sites in the cluster-derived samples were altered by exposure to the reactants. The Pt(5)Fe(2)/SiO(2) sample was also more active than Pt/SiO(2) for PROX with a selectivity of approximately 92% at 50 degrees C. In this case, the deactivation with time on stream was substantially slower, indicating that the highly reducing environment under the PROX conditions helps maintain the properties of the active Pt-Fe bimetallic sites.  相似文献   

15.
Three-dimensionally (3D) ordered mesoporous carbon sphere arrays (OMCS) are explored to support high loading (60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction (MOR). The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area (ECSA) (73.5 m2 g-1) and electrocatalytic activity (0.69 mA cm-2) for the MOR compared with the commercial 60 wt% Pt/C catalyst.  相似文献   

16.
王红娟  王晓慧  郑家道  彭峰  余皓 《催化学报》2014,35(10):1687-1694
以聚二烯丙基二甲基胺盐酸盐(PDDA)为连接剂,采用原位自组装方式将MoO3和WO3负载到碳纳米管(CNTs)上,然后通过乙二醇还原法负载Pt纳米颗粒,得到Pt纳米颗粒均匀分布的Pt/MoO3-WO3/CNTs催化剂.当氧化物总量控制在10 wt%,MoO3与WO3摩尔比为1:0.5时,Pt/MoO3-WO3/CNTs催化剂催化甲醇氧化活性最高,甲醇氧化峰电流If高达835 A/gPt.WO3和MoO3的加入提高了催化剂的甲醇氧化活性、抗CO中毒能力和稳定性,使得Pt/MoO3-WO3/CNTs催化剂表现出优异的甲醇电催化氧化性能.  相似文献   

17.
Mesoporous WC with hexagonal crystal structure was synthesized by a surfactant-assisted polymer method. A new electrocatalyst composed of a small amount of Pt supported on the mesoporous WC exhibited higher activity for electrooxidation of methanol than microporous Pt/WC or Pt/W2C as well as commercial Pt–Ru(1:1)/C catalysts. The mesoporosity and the phase of WC appear important for the high activity. Compared to the commercial Pt–Ru/C catalyst, the Pt/WC (mesoporous) showed the higher activity per mass of Pt by a factor of six even without Ru. Since the catalyst is also stable in electrochemical environment, it could become an alternative electrocatalyst for direct methanol fuel cells.  相似文献   

18.
Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ~0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.  相似文献   

19.
Bamboo-shaped carbon nanotubes (BCNTs), with a large amount of pentagon defects introduced in the walls, were explored as the support of high loaded Pt–Ru catalysts for the anode of direct methanol fuel cells (DMFCs) in comparison with conventional carbon nanotubes (CNTs) and Vulcan XC carbon black. By ethylene glycol reduction, Pt–Ru catalysts with a high loading (60 wt%) and uniform particle size of 2–3 nm were uniformly deposited on BCNTs; while 60 wt% Pt–Ru catalysts on CNTs resulted in significant agglomeration. The Pt–Ru/BCNT catalyst showed the highest activity on methanol oxidation in cyclic voltammetry and highest performance as the anode in a DMFC single cell. Such an enhancement was largely ascribed to an enhanced interaction of the introduced pentagon defects with Pt–Ru, which could promote a high loading and well dispersion of Pt–Ru catalysts and the charge transfer from Pt–Ru to the tubes.  相似文献   

20.
Monodisperse bimetallic Pd–Cu nanoparticles with controllable size and composition were synthesized by a one‐step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd85–Cu15, Pd56–Cu44, and Pd39–Cu61. The nanoparticles were separated from the solution mixture by extraction with non‐polar solvents, such as n‐hexane. Monodisperse bimetallic Pd–Cu nanoparticles with narrow size‐distribution were obtained without the need for a size‐selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as‐prepared nanoparticles were loaded onto a Vulcan XC‐72 carbon support. Supported bimetallic Pd–Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd–Cu catalyst that contained 15 % Cu, the activity was even comparable to the state‐of‐the‐art commercially available Pt/C catalysts. A STEM‐HAADF study indicated that the formation of random solid‐solution alloy structures in the bimetallic Pd85–Cu15/C catalysts played a key role in improving the electrochemical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号