首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The unique wide-angle distibine, {CH2(o-C6H4CH2SbMe2)}2, has been prepared indirectly by reaction of Me2SbCl with the di-Grignard formed unexpectedly by coupling of o-C6H4(CH2MgCl)2 in concentrated thf solution, and directly by treatment of the {CH2(o-C6H4CH2MgCl)}2 with Me2SbCl. The very oxygen-sensitive distibine has been characterised by 1H and 13C{1H} NMR spectroscopy and high-resolution EIMS. Oxidation of with Br2 gives the air-stable tetrabromide {CH2(o-C6H4CH2SbMe2Br2)}2. Surprisingly, shows a very strong tendency to function as a cis-chelate, e.g. to Pt(IV) in the complex [PtMe3I], forming an 11-membered ring and providing a stable Pt(IV) stibine complex, the crystal structure of which shows the Sb-Pt-Sb angle to be 95.96(1) degrees. The yellow Pt(II) complex [PtCl2] is obtained from reaction of [PtCl2(MeCN)2] with and IR spectroscopic data and a crystal structure determination confirm the Cl ligands are mutually cis in this species. Reaction of [W(CO)4(piperidine)2] with in refluxing EtOH gives [W(CO)4], the IR spectrum of which shows four nu(CO) bands, also consistent with cis-Sb2 coordination. The cis-chelation is also confirmed by single-crystal X-ray structure determinations of two polymorphs of [W(CO)4].  相似文献   

2.
The first series of Rh(I) distibine complexes with organometallic co-ligands is described, including the five-coordinate [Rh(cod)(distibine)Cl], the 16-electron planar cations [Rh(cod)(distibine)]BF4 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 and the five-coordinate [Rh(CO)(distibine)2][Rh(CO)2Cl2] (distibine=R2Sb(CH2)3SbR2, R=Ph or Me, and o-C6H4(CH2SbMe2)2). The corresponding Ir(I) species [Ir(cod)(distibine)]BF4 and [Ir{Ph2Sb(CH2)3SbPh2}2]BF4 have also been prepared. The complexes have been characterised by 1H and 13C{1H} NMR and IR spectroscopy, electrospray mass spectrometry and microanalysis. The crystal structure of the anion exchanged [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF(6).3/4CH2Cl2 is also described. The methyl-substituted distibine complexes are less stable than the complexes of Ph2Sb(CH2)3SbPh2, with C-Sb fission occurring in some of the complexes of the former. The salts [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF6 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 undergo oxidative addition with Br2 to give the known [RhBr2{Ph2Sb(CH2)3SbPh2}2]+, while using HCl gives the same hydride complex from both precursors, which is tentatively assigned as [RhHCl2{Ph2Sb(CH2)3SbPh2}]. An unexpected further Rh(III) product from this reaction, trans-[RhCl2{Ph2Sb(CH2)3SbPh2}{PhClSb(CH2)3SbClPh}]Cl, was identified by a crystal structure analysis and represents the first structurally characterised example of a chlorostibine coordinated to a metal. [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 reacts with CO to give [Rh(CO){Ph2Sb(CH2)3SbPh2}2]BF4 initially, and upon further exposure this species undergoes further reversible carbonylation to give a cis-dicarbonyl species thought to be [Rh(CO)2{Ph2Sb(CH2)3SbPh2}{kappa1Sb-Ph2Sb(CH2)3SbPh2}]BF4 which converts back to the monocarbonyl complex when the CO atmosphere is replaced with N2.  相似文献   

3.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

4.
The ligands o-C6H4(PMe2)2 and o-C6H4(AsMe2)2 (L-L) react with anhydrous InX3 (X = Cl, Br, or I) in a 2:1 InX3/ligand ratio to form [InX2(L-L)][InX4] containing distorted tetrahedral cations, established by X-ray crystal structures for L-L = o-C6H4(PMe2)2 (X = Br or I) and o-C6H4(AsMe2)2 (X = I). IR, Raman, and multinuclear NMR ((1)H, (31)P, (115)In) spectroscopy show that these are the only species present in solution in chlorocarbons and in the bulk solids. The products from reactions in a 1:1 or 1:2 molar ratio are more diverse and include the halide-bridged dimers [In2Cl6{o-C6H4(PMe2)2}2] and [In2X6{o-C6H4(AsMe2)2}2] (X = Cl or Br) and the distorted octahedral cation trans-[InBr2{o-C6H4(PMe2)2}2][InBr4]. The neutral complexes partially rearrange in chlorocarbon solution, with multinuclear NMR spectroscopy revealing [InX4](-) among other species. The iodo complexes trans-[InI2(L-L)2][InI4(L-L)] contain rare examples of six-coordinate anions, as authenticated by an X-ray crystal structure for L-L = o-C6H4(PMe2)2. Two species of formula [In2Cl5(L-L)2]n[InCl4]n (L-L = o-C6H4(PMe2)2 and o-C6H4(AsMe2)2) were identified crystallographically and contain polymeric cations with six-coordinate indium centers bonded to one chelating L-L and a terminal chlorine, linked by alternating single and double chlorine bridges into chains. The complicated chemistry of InX3 with these two rigid chelates is contrasted with that of the flexible diphosphane Et2P(CH2)2PEt2, which forms [In2Cl6{Et2P(CH2)2PEt2}2], and with more sterically demanding o-C6H4(PPh2)2 (Sigl et al. Eur. J. Inorg. Chem. 1998, 203-210). The results also contrasted with those found for GaX3 with the same ligands (Cheng et al. Inorg. Chem. 2007, 46, 7215-7223).  相似文献   

5.
High yield syntheses for 1,2-, 1,3-, and 1,4-xylyl distibines (1,2-C6H4(CH2SbMe2)2, 1,3-C6H4(CH2SbMe2)2, 1,4-C6H4(CH2SbMe2)2, respectively) from Me2SbCl (conveniently made in situ from Me2PhSb and HClgas) and the appropriate di-Grignard are reported. The 1,3- and 1,4-phenylene distibines, 1,3-C6H4(SbMe2)2 and 1,4-C6H4(SbMe2)2, were made similarly. The new ligands have been characterised by mass spectrometry, 1H and 13C[1H] NMR spectroscopy, and by the preparation of methiodide derivatives. The crystal structures of 1,4-C6H4(CH2SbMe2)2 and [1,3-C6H4(CH2SbMe3)2]I2 have been determined. The synthesis of 1,2-C6H4(CH2SbPh2)2 has been achieved similarly in modest yield and the distibine converted into the tetra-iodo-derivative 1,2-C6H4(CH2SbPh2I2)2. The coordination modes available to these ligands have been probed by the synthesis and characterisation of complexes with nickel, iron and tungsten carbonyls. The crystal structure of [[Fe(CO)4]2[micro-1,3-C6H4(CH2SbMe2)2]] has been determined. The spectroscopic properties of these carbonyl derivatives have been compared with those of complexes of other antimony ligands, and in some cases with diphosphine and diarsine complexes, to probe the electronic properties of the new ligands.  相似文献   

6.
Tan R  Song D 《Inorganic chemistry》2011,50(21):10614-10622
The dinuclear Me(2)Pt(II) complexes of 3,4-bis(quinolin-8-yl)thiophene (1a), 3,4-bis(6 trifluoromethoxyquinolin-8-yl)thiophene (1b), and 3,4-bis(2-methylquinolin-8-yl)thiophene (1c) react with MeOTf (OTf = trifluoromethanesulfonate) to afford the corresponding chiral mononuclear five-coordinate Me(3)Pt(IV) complexes [PtMe(3)(1a)]OTf (3a), [PtMe(3)(1b)]OTf (3b), and [PtMe(3)(1c)]OTf (3c), respectively. [PtMe(3)(1c)]BAr(F)(4) (3d) (where BAr(F)(4) = [B{C(6)H(3)-3,5-(CF(3))(2)}(4)]) has also been synthesized for structural study. While 3a appears to be symmetric in solution and asymmetric in solid state, 3c and 3d are asymmetric in both solution and solid state. The chirality originates from interligand repulsion, rather than any unsymmetrical ligand. Variable-temperature NMR and computational studies suggest a ligand-twisting isomerization pathway for the interconversion of the enantiomers, rather than the rotational exchange of three CH(3) ligands on the metal center.  相似文献   

7.
Treatment of trans-[PtCl4(RCN)2] (R = Me, Et, Ph, NEt2) with 2 equiv of the amidine PhC(=NH)NHPh in a suspension of MeCN (R = Me), CHCl3 (R = Et, Ph), or in CHCl3 solution (R = NEt2) results in the formation of the imidoylamidine complexes trans-[PtCl4{NH=C(R)N=C(Ph)NHPh}2] (1-4) isolated in good yields (66-84%). The reaction of soluble complexes 3 and 4 with 2 equiv of Ph3P=CHCO2Me in CH2Cl2 (40 degrees C, 5 h) leads to dehydrochlorination resulting in a chelate ring closure to furnish the platinum(IV) chelates [PtCl2{NH=C(R)NC(Ph)=NPh}2] (R = Ph, 5; R = NEt2, 6), accordingly, and the phosphonium salt [Ph3PCH2CO2Me]Cl. Treatment of 5 with 3 equiv of Ph3P=CHCO2Me at 50 degrees C for 5 d resulted in only a 30% conversion to the corresponding Pt(II) complex [Pt{NH=C(NEt2)NC(Ph)=NPh}2] (15). The reduction can be achieved within several minutes, when Ph2PCH2CH2PPh2 in CDCl3 is used. When the platinum(II) complex trans-[PtCl2(RCN)2] is reacted with 2 equiv of the amidine, the imidoylamidinato complexes [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) and [PhC(=NH)NHPh] x HCl (7) are formed. The reaction of trans-[PtCl2(RCN)2] with 4 equiv of the amidine under a prolonged reaction time or treatment of [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) with 2 more equiv of the amidine yields the complex bearing two chelate rings [Pt{NH=C(R)NC(Ph)=NHPh}2] (12-15). The treatment of cis-[PtCl2(RCN)2] (R = Me, Et) with the amidine gives ca. 50-60% yield of [PtCl2{NH=C(R)NHC(Ph)=NHPh}] (16 and 17). All of the platinum compounds were characterized by elemental analyses; FAB mass spectrometry; IR spectroscopy; 1H, 13C{1H}, and 195Pt NMR spectroscopies, and four of them (4, 6, 8, and 15) were also characterized by X-ray crystallography. The coupling of the Pt-bound nitriles and the amidine is metal-mediated insofar as RCN and PhC(=NH)NHPh do not react in the absence of the metal centers in conditions more drastic than those of the observed reactions. The nitrile-amidine coupling reported in this work constitutes a route to the synthesis of imidoylamidine complexes, some of them exhibiting luminescent properties.  相似文献   

8.
The Pt(IV) complexes P(2)PtMe(3)R [P(2) = dppe (PPh(2)(CH(2))(2)PPh(2)), dppbz (o-PPh(2)(C(6)H(4))PPh(2)); R = Me, H] undergo reductive elimination reactions to form carbon-carbon or carbon-hydrogen bonds. Mechanistic studies have been carried out for both C-C and C-H coupling reactions and the reductive elimination reactions to form ethane and methane are directly compared. For C-C reductive elimination, the evidence supports a mechanism of initial phosphine chelate opening followed by C-C coupling from the resulting five-coordinate intermediate. In contrast, mechanistic studies on C-H reductive elimination support an unusual pathway at Pt(IV) of direct coupling without preliminary ligand loss. The complexes fac- P(2)PtMe(3)R (P(2) = dppe, R = Me, H; P(2) = dppbz, R = Me) have been characterized crystallographically. The Pt(IV) hydrides, fac-P(2)PtMe(3)H (P(2) = dppe, dppbz), are rare examples of stable phosphine ligated Pt(IV) alkyl hydride complexes.  相似文献   

9.
Eight-coordinate [MX(4)(L-L)(2)] (M = Zr or Hf; X = Cl or Br; L-L = o-C(6)H(4)(PMe(2))(2) or o-C(6)H(4)(AsMe(2))(2)) were made by displacement of Me(2)S from [MX(4)(Me(2)S)(2)] by three equivalents of L-L in CH(2)Cl(2) solution, or from MX(4) and L-L in anhydrous thf solution. The [MI(4)(L-L)(2)] were made directly from reaction of MI(4) with the ligand in CH(2)Cl(2) solution. The very moisture-sensitive complexes were characterised by IR, UV/Vis, and (1)H and (31)P NMR spectroscopy and microanalysis. Crystal structures of [ZrCl(4)[o-C(6)H(4)(AsMe(2))(2)](2)], [ZrBr(4)[-C(6)H(4)(PMe(2))(2)](2)], [ZrI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] and [HfI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] all show distorted dodecahedral structures. Surprisingly, unlike the corresponding Ti(iv) systems, only the eight-coordinate complex was found in each system. In contrast, the ligand o-C(6)H(4)(PPh(2))(2) forms only six-coordinate complexes [MX(4)[-C(6)H(4)(PPh(2))(2)]] which were fully characterised spectroscopically and analytically. Surprisingly the tripodal triarsine, MeC(CH(2)AsMe(2))(3), also produces eight-coordinate [MX(4)[MeC(CH(2)AsMe(2))(3)](2)] in which the triarsines bind as bidentates in a distorted dodecahedral structure. There is no evidence for seven-coordination as found in some thioether systems.  相似文献   

10.
Complexes of the title ligand with Cu(I), Ag(I), Au(I), Pd(II), Pt(II), Rh(III), and rare examples with Ni(II) and Co(III) have been prepared and characterised by analysis, IR, UV-vis, 1H, 63Cu and 59Co NMR spectroscopy and ES+ mass spectrometry as appropriate. The structures of [Cu[1,2-C6H4(CH2SbMe2)2]2]BF4, [PtCl2[1,2-C6H4(CH2SbMe2)2]], [M[1,2-C6H4(CH2SbMe2)2]2][PF6]2 (M = Pd or Pt), and [NiI[1,2-C6H4(CH2SbMe2)2]2]ClO4 have been determined, and the varying chelate bite and conformations of the xylyl backbone in these structures are discussed. Despite the unfavourable seven-membered chelate ring and the large soft antimony donors, 1,2-C6H4(CH2SbMe2)2 proves to be a surprisingly good ligand for late transition metals in medium oxidation states.  相似文献   

11.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

12.
New five-coordinate Pt(IV) complexes [{(o-R2-p-R'-C6H2)NC(R' ')}2CH]PtMe3 (R, R', R' ' = alkyl or H) are reported. The complex with R = Me, R' = tBu, R' ' = Me generates unsaturated Pt(II) species capable of alkane C-H bond activation and stoichiometric dehydrogenation.  相似文献   

13.
The new bitopic, bis(1-pyrazolyl)methane-based ligand o-C6H4[CH2OCH2CH(pz)2]2 (L2, pz = pyrazolyl ring) is prepared from the reaction of (pz)2CHCH2OH (obtained from the reduction of (pz)2CHCOOH with BH3.S(CH3)2) with NaH, followed by the addition of alpha,alpha'-dibromo-o-xylene. The reaction of L2 with AgPF6 or AgO3SCF3 yields {o-C6H4[CH2OCH2CH(pz)2]2(AgPF6)}n or {o-C6H4[CH2OCH2CH(pz)2]2(AgO3SCF3)}n, respectively. Both compounds in the solid state have tetrahedral silver(I) centers arranged in a 1D coordination polymer network. The analogous ligand based on tris(1-pyrazolyl)methane units, o-C6H4[CH2OCH2C(pz)3]2 (L3), reacts with AgO3SCF3 to form a similar coordination polymer, {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)}n. In this case, each tris(pyrazolyl)methane unit in L3 adopts the kappa2-kappa0 bonding mode. Crystallization of a 3:1 mixture of AgO3SCF3 and L3 yields {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)2}n, in which the tris(1-pyrazolyl)methane units adopt a kappa2-kappa1 coordination mode.  相似文献   

14.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

15.
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.  相似文献   

16.
The diphosphane o-C6H4(PMe2)2 reacts with GaX3 (X = Cl, Br, or I) in a 1:1 molar ratio in dry toluene to give trans-[GaX2{o-C6H4(PMe2)2}2][GaX4], the cations of which contain the first examples of six-coordinate gallium in a phosphane complex. The use of a 1:2 ligand/GaCl3 ratio produced [GaCl2{o-C6H4(PMe2)2}][GaCl4], containing a pseudotetrahedral cation, and similar pseudotetrahedral [GaX2{o-C6H4(PPh2)2}][GaX4] complexes are the only products isolated with the bulkier o-C6H4(PPh2)2. On the other hand, Et2P(CH2)2PEt2, which has a flexible aliphatic backbone, formed [(X3Ga)2{mu-Et2P(CH2)2PEt2}], in which the ligand bridges two pseudotetrahedral gallium centers. The diarsane, o-C6H4(AsMe2)2, formed [GaX2{o-C6H4(AsMe2)2}][GaX4], also containing pseudotetrahedral cations, and in marked contrast to the diphosphane analogue, no six-coordinate complexes form; a very rare example where these two much studied ligands behave differently towards a common metal acceptor. The complexes [(I3Ga)2{mu-Ph2As(CH2)2AsPh2}] and [GaX3(AsMe3)] are also described. The X-ray structures of trans-[GaX2{o-C6H4(PMe2)2}2][GaX4] (X = Cl, Br or I), [GaCl2{o-C6H4(PPh2)2}][GaCl4], [GaX2{o-C6H4(AsMe2)2}][GaX4] (X = Cl or I), [(I3Ga)2{mu-Ph2As(CH2)2AsPh2}], and [GaX3(AsMe3)] (X = Cl, Br or I) are reported, and the structural trends are discussed. The solution behavior of the complexes has been explored using a combination of 31P{1H} and 71Ga NMR spectroscopy.  相似文献   

17.
The synthesis of perfluoroalkyl-substituted "pincer"-type PCP ligands, 1,3-C6H4(CH2P(Rf)2)2 (Rf = CF3, C2F5), and platinum coordination studies (Rf = CF3) are reported. 1,3-C6H4(CH2P(CF3)2)2 (CF3PCPH) reacts at ambient temperatures with (cod)Pt(Me)Cl (cod = 1,5-cyclooctadiene) and (cod)PtMe2 to afford unmetalated PCPH-bridged products [(CF3PCPH)Pt(Me)Cl]x and cis-[(CF3PCPH)PtMe2]2, respectively. cis-[(CF3PCPH)PtMe2]2 is soluble and has been spectroscopically and crystallographically characterized. Thermolysis of these compounds results in the loss of methane and the formation of metalated complexes (CF3PCP)PtCl and (CF3PCP)PtMe. Treatment of (CF3PCP)PtCl with MeMgBr provides an alternative route to (CF3PCP)PtMe. The carbonyl cation (CF3PCP)Pt(CO)+SbF6- (nu(CO) = 2143 cm(-1)) was readily prepared by chloride abstraction with AgSbF6 under 1 atm CO. nu(CO) data indicates that RfPCP ligands are electronically analogous to trans acceptor phosphine complexes such as trans-((C2F5)2PMe)2Pt(Me)(CO)+ (nu(CO) = 2149 cm-1).  相似文献   

18.
The reactions of GaX3 (X = Cl, Br or I) with SMe2, SeMe2 and TeMe2 (L) in non-coordinating solvents produces only the pseudo-tetrahedral [GaX3L], which have been characterised by IR, Raman and multinuclear NMR (1H, 71Ga, 77Se or 125Te) spectroscopy, and by the crystal structure of [GaCl3(SeMe2)]. The 71Ga NMR resonances show small low frequency shifts for fixed halides as the neutral donors change from S --> Se --> Te. Bidentate ligands including MeS(CH2)2SMe, PhS(CH2)2SPh, MeSe(CH2)2SeMe, nBuSe(CH2)2Se(n)Bu and MeTe(CH2)3TeMe (L-L) also produce complexes with 4-coordinate gallium centres, [(GaX3)2(mu-L-L)], confirmed by the crystal structures of [(GaI3)2(mu-MeS(CH2)2SMe)], [(GaCl3)2(mu-PhS(CH2)2SPh)] and [(GaCl3)2(mu-nBuSe(CH2)2Se(n)Bu)]. The structural data are consistent with the weaker Lewis acidity of the gallium as the halide co-ligands become heavier. Multinuclear NMR studies suggest that in chlorocarbon solutions partial dissociation of the ligands occur, which increases with the halide co-ligand Cl < Br < I. The o-xylyl dithioether, o-C6H4(CH2SMe)2, despite being pre-organised for chelation, also forms [(GaCl3)2(mu-L-L)]. The corresponding diselenoether complex decomposes in solution with C-Se bond cleavage to form the selenonium salt [o-C6H4CH2Se(Me)CH2][GaCl4], which was structurally characterised. The ditelluroether o-C6H4(CH2TeMe)2 undergoes rapid C-Te bond fission and rearrangement upon reaction with GaCl3, and the telluronium species [o-C6H4CH2Te(Me)CH2]+ and [MeTe(CH2(o-C6H4)CH2TeMe)2]+ have been identified by ES+ mass spectrometry from their characteristic isotope patterns.  相似文献   

19.
[Hg{CH2C(O)Me}2] reacts with K[PtCl3(CH2=CH2)](2 : 1 molar ratio) to give K[Pt2{CH2C(O)Me}6(mu-Cl)3] (1); the intermediate [Pt{CH2C(O)Me}Cl2(CH2=CH2)]- has been detected in solution and isolated as a Me4N+ salt; the process occurs through successive normal and redox transmetallation reactions and an ab initio X-ray powder diffraction study of has proven to be essential to establish its nature.  相似文献   

20.
The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号