首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

2.
A conductance study concerning the association of Na+, K+, Rb+, and Cs+ with 1,13-dibenzo-24-crown-8 in acetonitrile has been carried out at 35, 30, 25, 20, and 15°C. The observed molar conductivities were found to decrease significantly for mole ratios less than unity. A model involving 11 stoichiometry has been used to analyze the conductivity data. The stability constant, K, and the molar conductivity C for each 11 complex were determined from the conductivity data by using a nonlinear least squares curve fitting procedure. The binding sequence, based on the value of log K at 25°C, is found to be Rb+>Cs+>K+>Na+. Values of Ho and So are reported and their significance is discussed.  相似文献   

3.
The decrease in the molar electrolytic conductance of Na+, K+, Rb+, and Cs+ tetraphenylborates, caused by the addition of benzo-15-crown-5 in acetonitrile at constant ionic strength, is analyzed according to a model involving 1:1 stoichiometry. The stability constant,K, and the limiting molar conductivity, c , for each 1:1 complex are determined from the conductance measurements by using a nonlinear least squares curve fitting procedure. The stability sequence of the 1:1 complexes, as deduced from data at 288, 293, 298, 303, and 308 K, has the order Na+>K+>Rb+>Cs+. Values of H 0, S 0, and c at 298 K are reported and their significance is discussed.  相似文献   

4.
A thermodynamic study of the association of Na+, K+, Rb+, and Cs+ with dicyclohexano-18-crown-6 in acetonitrile has been carried out at 308, 303, 298, 293, and 288 K using a conductometric technique. The observed molar conductivities, A, were found to decrease significantly for mole ratios less than unity. A model involving 11 stoichiometry has been used to analyze the conductivity data. The stability constant,K, and the limiting molar conductivity, A c , for each 11 complex were determined from the conductivity data by using a nonlinear least squares curve fitting procedure. The binding sequence, based on the value of logK at 298 K, as derived from this study is K+>Na+>Rb+>Cs+. Values of H o and S o are reported and their significance is discussed.  相似文献   

5.
The energetic and structural optimized of a calix[4]arene with and without alkali-metal cations are presented with performance of various quantum chemical methods such as Hartree--Fock, second order Møller-Plesset perturbation theory, and density functional theory. The geometry optimizations have been carried out with the 3-21G (Li+--Cs+) and 3-21G(d,p) (Li+--K+) and the 3-21G basis sets for Cs+ and Rb+. Additional single-point energy ab initio calculations for Li+–K+ were carried out at HF/6--31G, HF/6-31G (d,p), HF/6--311G(d,p) for complexes of Li+ and Na+. The calculations were carried out to analyze the complexation of calix[4]arene with alkali metal cationic species (Li+, Na+, K+, Rb+, and Cs+). Assumption to isolate the effects of the aromatic core and cation-π interactions. Particular emphasis has been on conformational binding selectivity and the structural characterization of the complexes, the smaller cation as Li+ and Na+ has been placed in the lower rim's of the calix[4]arene's cavity. The large cations like K+, Rb+, and Cs+ take placed in upper rim and the endo (inclusive) complexation is driven by cation-π interactions, that reflect a superior interaction with two phenol rings. The endo complexation of Cs+ with calix[4]arene is in agreement with X-ray diffraction data. The binding modes of calixarene-cation systems are studied to involve cooperative effects between cation-π and electrostatic forces.  相似文献   

6.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

7.
Formation constants of 1 : 1 19-crown-6(19C6) complexes with alkali metal ions weredetermined conductometrically at 25 °Cin acetonitrile(AN), propylene carbonate (PC), methanol, DMF, andDMSO. 19C6 always forms the most stable complex withK+. The selectivity order of 19C6 forheavy alkali metal ions isK+ > Rb+ > Cs+.The selectivity for Na+ varies withthe solvent; that for Li+ is the second lowest(AN, DMSO) or the lowest (PC). Transfer activity coefficients(SH 2 O) of19C6 from water to the nonaqueous solvents (S) weremeasured at 25 °C. The contributions of a methylenegroup and an ether oxygen atom to thelog SH 2 Ovalue of a crown ether wereobtained. The SH 2 Ovalues of the 19C6–alkali metal ion complexes(SH 2 O (ML+)) werecalculated, M+ and L denoting an alkali metal ionand a crown ether, respectively. For AN, PC, andCH3OH, although the M+ ion is more stronglysolvated by water than by AN, PC, or CH3OH, thelog SH 2 O (ML+) islarger than the correspondinglog SH 2 O (L)expect for the case of M+ = Li+.The higher lipophilicity of the19C6 complex ion is attributed to an enforcement ofthe hydrogen-bonded structure of water for the complexion caused by the greatly decreased hydrogen bondingbetween ether oxygen atoms and water uponcomplexation. For DMF and DMSO, thelog SH 2 O (ML+) is also greater thanthe correspondinglog SH 2 O (L).It was concluded from thisfinding that the unexpectedly lowest stability of the19C6 complex ion in water is due to the hydrogenbonding between 19C6 and water. The stabilities and thelog SH 2 Oof 19C6–alkali metal ion complexes were compared with those of 18C6complexes.  相似文献   

8.
The partition of the spin label TEMPO in the hydrophobic region of di-palmitoyl-phosphatidylcholine unilamellar vesicles has been used to investigate the influence of high concentration (up 3M) of Li+, Na+, K+, and Cs+ on the phase transitions at 20–60°C. All of the above salts increase the permeation of TEMPO. The efficiency of monovalent cations in inducing the partition of the spin label in the hydrophobic environment of the bilayer increases in the order: Cs++++. The disappearing of the pretransition and the downward shift of the main phase transition temperature from 37°C to 33.5°C is related to the increased permeation of TEMPO into the bilayer. The presence of salts in the bulk solution disturbs the hydration of the zwitterionic polar head of the DPPC molecules and changes the electrical interaction between the polar groups of the bilayer. This reduces the packing density of the lipid molecules and promotes the permeation of TEMPO.  相似文献   

9.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

10.
Heats of solution of 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) in acetonitrile, 1,2-dichloroethane, N,N-dimethylformamide, dimethyl sulfoxide, nitromethane, propylene carbonate, pyridine and water were measured at 25 °C and the enthalpies of the transfer of 18-crown-6 from waterto the aprotic solvents were derived. The thermodynamic quantities, G1°, H1° and T S1°, for the formation of the[M(18-crown-6)]+ (M+ = Na+, K+, Rb+, Cs+, NH4 +) complexeswere determined by titration calorimetry in dimethyl sulfoxide containing0.1 mol dm-3 (C2H5)4NClO4 as a constant ionic medium at 25 °C. These thermodynamic quantities suggest that the complexationof 18-crown-6 with the alkali-metal ions mainly reflects the different solvationof 18-crown-6 and also the different degree of solvent structure.  相似文献   

11.
From the extraction experiments and -activity measurements, the extraction constant corresponding to the Rb+(aq)+CsL+(nb)RbL+(nb)+Cs+(aq) equilibrium in the two-phase water-nitrobenzene system (L=valinomycin; aq=aqueous phase, nb=nitrobenzene phase) was evaluated in the form logK ex (Rb+, CsL+)=0.9. Further, the stability constant of the valinomycin-rubidium complex in nitrobenzene saturated with water was calculated as log nb(RbL+)=11.7.  相似文献   

12.
Sodium salicylate (NaSal where Sal=2-hydroxybenzoate), when mixed with dibenzo-24-crown-8 (DB24C8) yields a bimetallic complex [NaSal]2DB24C8 in most polar organic media, while potassium salicylate (KSal) under similar conditions shows a tendency to yield 11 or 21 complexes depending upon medium or synthesis. However, the presence of both NaSal and KSal together results in a unique mixed cation complex of composition NaKSal2DB24C8. This product melts sharply (190-92°C) without decomposition, displays IR spectral characteristics comparable to those of [Na(Sal)]2DB24C8, and is stable in aqueous media as shown by the detectable cation effect on the UV absorption bands of Sal and DB24C8. Single crystal X-ray analysis of NaK(Sal)2DB24C8 reveals that the system represents a co-crystallization complex of individual (KSal)2DB24C8 and (NaSal)2DB24C8 molecules. The crystals are monoclinic,P21/c,a=19.976(2) Å,b=9.031(1) Å,c=25.541(5) Å,=122.065(9)°, Å3,T=298 K,Z=2+2, CuK =1.5418 Å, and 2 (2.5°–100°). FinalR factor for the 3012 observed reflections (F>3) is 0.092. Both the Na2- and K2-molecules possess crystallographic centers of symmetry with one metal and its associated anion on each side of the crown ring. However, the conformations of the crowns are very different in the two molecules, with the K2-crown being nearly planar and the Na2-crown being quite puckered. Four oxygen atoms from the DB24C8 (KO, 2.680–2.908 Å) and three carboxyl oxygen atoms (KO, 2.472–2.708 Å) from separate salicylate ions coordinate with each potassium. Three oxygens from the crown (NaO, 2.536–2.65 Å) and three carboxyl oxygens (NaO, 2.31–2.563 Å) coordinate with each sodium. The salicylate ions lie on opposite sides and nearly perpendicular (77.2°, Na2-molecule; 82.7° K2-molecule) to each crown but coordinate to both of the metal ions within a molecule. The K+K+ and Na+Na+ distances in the respective molecules are 3.95 and 3.34 Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82044 (18 pages).  相似文献   

13.
Summary Rate constants for the oxidation of thiosulphate by hexachloroplatinate(IV) have been measured. The kinetics of the oxidation of thiosulphate follow a second-order rate law, first order with respect to thiosulphate and first order with respect to platinum(IV). The influence of pH is small. The rates are found to depend on the nature and concentration of the cations and follow the order: Cs+>Rb+>K+>Na+>Li+. The activation parameters calculated from the temperature studies are: H=42.9 k J mol–1 and S=–102 JK–1 mol–1. A mechanism of the reaction in terms of intermediate formation of free radicals followed by the formation of tetrathionate is postulated to explain the kinetic behaviour.  相似文献   

14.
Selectivity of Crystalline CeIV Phosphate Sulphate Hydrates for Li+, Na+, K+, Rb+, Cs+, and NH in Absolute Methanol and Absolute Dimethylsulphoxide The sequence of exchange capacities of Cerium(IV) phosphate sulphate hydrate (CePO4)2(HPO4)0.74(SO4)0.26 · 4,74 H2O for alkalimetal ions and ammoniumions in absolute methanol at 25°C for the case of a small excess of the exchanger (in relation to the equivalent amount) is given by K+ > Rb+ ≥ NH4+ > Cs+ > Na+ > Li+. Between the exchange capacity A of these cations and their ionic radii r (given by Ladd) exists the simple relation A = const./r. For Na+ the radius of the inner hydration shell must be considered. In absolute dimethyl-sulphoxide under the same conditions the sequence is K+ ≥ NH4 > Rb+ > Na+ > Cs+ > Li+. For K+, NH4, Rb+ and Cs+ the exchange capacity is given by A = const./r + const. · r4. The sequences of the alkali ions in both solvents are among the group of 13 sequences which are physicaly significant according to EISENMANNS 's theory. The results are compared with the observations made with water as solvent.  相似文献   

15.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)+NaL+(nb)⇔ML+(nb)+Na+(aq) taking place in the two-phase water-nitrobenzene system [M+=Li+, K+, Rb+, Cs+; L = p-tert-butylcalix[4]arene-tetrakis (N, N-dimethylthioacetamide); aq = aqueous phase, nb = nitrobenzene phase] were evaluated. Furthermore, the stability constants of the ML+ complexes in water saturated nitrobenzene were calculated; they were found to increase in the cation order Cs+<Rb+<K+<Li+<Na+.  相似文献   

16.
MP2/6-31+G* calculations were performed on the cation- complexes of ethylene, cyclobutadiene and benzene with a number of atomic cations. It was found that except B+ all the atomic cations form -type cation- complexes with ethylene. On the other hand, with cyclobutadiene Li+, N+, Na+, P+ and K+ form -type complexes, whereas H+, F+, and Cl+ form covalent -type complexes. With benzene Li+, B+, Na+, Al+, and K+ form -type complexes whereas H+, F+, and Cl+ form -type complexes. It was concluded that the driving force to form the -type complex is chemical bonding, and that for metal cations to form -type complexes is non-covalent interaction.  相似文献   

17.
A criterion for the selection of a suitable plasticizer for calix[n]arene-based ion-selective electrodes is discussed. The cation selectivity of plasticized membranes without the ligand was first measured as a reference. The membranes can be roughly classified into two groups. The first group shows cation selectivity in the order Cs++>K+>Na+>Li+. The membranes in the second group are made of phosphorus plasticizers, which show a selectivity in the reverse order. The plasticizers in the first group featured a linear relationship between the dipole moment of the plasticizer (calculated by a PM3 method) and the ratio of cesium selectivity to lithium selectivity. The linear relationship supports the view that the polar membrane which includes a soft plasticizer with a large dipole moment shows selectivity for Cs+, whereas the nonpolar membrane including the soft plasticizer with the small dipole moment shows much lower selectivity for Cs+. Next, 2-fluorphenyl-2-nitrophenyl ether (FPNPE) which showed the highest Cs+ selectivity and tris(2-ethylhexyl)phosphate (TEHP) which showed the highest Li+ selectivity were mixed in an appropriate ratio to make membranes with a different affinity for hard ions. The metal selectivities of several crown-based and calixarene-based ionophores were examined in these membranes. Although a few exceptions exist, the polar soft membrane is favorable when the interfering metal ion is hard, whereas the hard membrane is favorable when the interfering metal ion is soft.  相似文献   

18.
The overall extraction equilibrium constants, Kex, of 1:1:m complexes of 1,2-bis[2-(2-methoxyethoxy)ethoxyjbenzene (AC · B18C6) with uni- and bivalent metal picrates, MA m were determined at 25°C between CHCl3 and water, and thereby the ion-pair complex-formation constants,K MLA,o, of AC · B18C6 with the univalent metal picrates in CHCl3 were calculated. The AC · B18C6 is an open-chain analog of benzo-18-crown-6 (B18C6). The equilibrium constants of AC · B18C6 were compared with those of B18C6. Kex sequences of AC · B18C6 for uni- and bivalent metals are Tl+ > K+ > Rb+ > Cs+ > Na+ > Li+ and Pb2+ > Ba2+ > Sr2+, respectively. The same extraction-selectivity was observed for B18C6, but the extractability of AC · B18C6 for the same cation is much lower than that of B18C6; the extraction selectivity of AC · B18C6 for alkali metals is lower than that of B18C6. TheK MLA,o sequence of AC · B18C6 is K+ > Rb+ > Tl+ > Cs+ Na+, which is consistent with that of B18C6. ButK MLA,o of AC · B18C6 is much smaller than the correspondingK MLA,o of B18C6; the selectivity of AC · B18C6 among alkali metal picrates in CHCl3 is lower than that of BI8C6. This reflects the difference in the structures between AC · B18C6 (acyclic and flexible) and B18C6 (cyclic and rigid).  相似文献   

19.
Precise conductance measurements of solutions of lithium chloride, lithium bromide, lithium iodide, lithium perchlorate, lithium tetrafluoroborate, lithium hexafluoroarsenate, tetrabutylammonium bromide, and tetrabutylammonium tetraphenylborate in N,N-dimethylacetamide are reported at 25°C in the concentration range 0.005–0.015 mol-dm–3. The conductance data have been analyzed by the 1978 Fuoss conductance equation in terms of the limiting molar conductance (0), the association constant (K a), and the association diameter (R). The limiting ionic conductances have been estimated from an appropriate division of the limiting molar conductivity of the reference electrolyte Bu4NBPh4. Slight ionic association was found for all these salts in this solvent medium. The results further indicate significant solvation of Li+ion, while the other ions are found to be unsolvated in N,N-dimethylacetamide.  相似文献   

20.
An equilibrium study concerning the association of Na+, K+, Rb+ and Cs+ with 4, 7, 13, 18-tetraoxa-1,10-diazabicyclo [8, 5, 5]-eicosane [211], 4, 7, 13, 16, 21-pentaoxa-1, 10-diazabicyclo [8, 8, 5]-tricosane [221] and 4, 13-didecyl-1, 7, 10, 16-tetraoxa-4, 13-diazacyclooctadecane [22-DD] in acetonitrile has been carried out at 25 °C by using a conductometric technique. The observed molar conductivity, Λ, of a test solution was found to decrease significantly for mole ratios less than 1:1 upon the addition of the complexing ligand. A model based on 1:1 stoichiometry has been used to analyze the conductivity data. The data have been fitted according to a non-linear least-squares analysis that provides the stability constant, K, and the molar conductivity, Λc, for each cation – ligand inclusion complex. The binding sequences were found to follow the order: Na+ > K+ > Rb+ ≫ Cs+ (K ≈ 0) for [211], Na+ > K+ > Rb+ > Cs+ for [221] and K+ > Na+ > Rb+ > Cs+ for [22-DD] complexes. Trends in ionic conductivities of complexed ions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号