首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of torque-induced shear stresses in the presence of slippage, and the residual stresses remaining after torque-induced slippage, are analysed using frozen-stress photoelasticity. Shaft/ring specimens were manufactured from epoxy photoelastic material and were assembled by shrink-fitting prior to being loaded under various regimes, notably the application and release of a torque load. The interface pressure was predicted from Lamé thick cylinder theory, and was also estimated by fitting the Lamé model to the measured stress distributions. The distributions of interface shear stress were calculated from averaged photoelastic data, and compared with the results of a dislocation-based model and with a nonlinear finite element model. For a torque loaded specimen there was good agreement between experimental, theoretical and FE data. Another specimen was loaded in torque then unloaded, with results showing the expected features of slippage and residual stress.
J. D. BookerEmail:
  相似文献   

2.
赵玉萍  王世鸣 《应用力学学报》2020,(1):321-329,I0022,I0023
以单纤维十字型横向拉伸试验为研究对象,对纤维/基体界面采用弹性-软化双线性内聚力模型,建立了纤维复合材料在横向拉伸作用下界面法向失效过程的解析模型。得到了沿纤维/基体圆周界面的法向应力分布,纤维/基体界面的状态与界面承载力和单纤维复合材料承载力的关系,以及内聚力参数和试件几何尺寸对它们的影响。结果表明:纤维/基体圆周界面在脱粘前经历全部弹性及弹性+软化两种状态;当界面为弹性状态时,界面法向应力随界面强度线性增加;当界面为弹性+软化状态时,界面软化范围随界面裂纹萌生位移的增加而增大;界面初始脱粘位置与拉伸荷载方向重合;界面初始脱粘时的界面承载力随界面强度及界面裂纹萌生位移的增加而增加,随界面裂纹生成位移的增加而降低;单纤维复合材料的脱粘荷载受基体截面尺寸的影响,当纤维体积含量相同时,沿荷载方向截面尺寸的增大对提高脱粘荷载更显著。  相似文献   

3.
The mechanical behavior of uniaxially fiber-reinforced composites with a ductile rubber-toughened epoxy matrix was studied through the finite element analysis of a RVE of the composite microstructure. The fibers were represented by elastic and isotropic solids, while the rubber-modified epoxy matrix behaved as a elasto-viscoplastic solid. The matrix flow stress followed the model developed by Jeong [Jeong, H.-Y., 2002. A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices. International Journal of Solids and Structures 39, 1385–1403.], which included the inherent pressure-sensitivity of the yield stress in the epoxy matrix, the damage due to the cavitation of the rubber particles and subsequent void growth, and the particular features of elastic–viscoplastic behavior in glassy polymers, particularly the intrinsic softening upon yield followed by hardening. Composites with either perfect or weak fiber/matrix interfaces (the latter introduced through cohesive elements) were studied to assess the influence of interface strength on the composite behavior. Simulations under transverse tension and out-of-plane shear were carried out to establish the effect of loading conditions on the dominant deformation and failure micromechanisms. In addition, the corresponding failure locus was obtained and compared with the predictions of current phenomenological failure criteria for composites. The range of validity of these criteria and the areas for further improvement were established by comparison with the numerical results.  相似文献   

4.
The two-way shape memory effect in monolithic shape memory alloys has been widely investigated both theoretically and experimentally. In the present study, this effect is analyzed for shape memory alloy composites by employing a micromechanical model. To this end, the responses of polymeric matrix and metal matrix unidirectional composites with embedded shape memory alloy fibers are determined. For the polymeric matrix composite, the effect of axial, transverse and shear loadings as well as the fiber volume fraction on the resulting two-way shape memory behavior are studied. The local distributions of stresses among the shape memory alloy fiber and epoxy matrix in the low- and high-temperature shapes of the composite are also investigated. Two training procedures that generate the two-way shape memory effect in the metal matrix composite are offered. The present analysis shows that the two-way shape memory effect in the chosen type of metal matrix composite is not as useful as in the polymeric matrix one. Finally, for a polymeric matrix composite that is subjected to a transverse normal loading, the effect of imperfect bonding between the shape memory alloy fibers and the neighboring matrix is investigated.  相似文献   

5.
A micromechanical model is presented for simulating the nonlinearities exhibited by AS4/PEEK composites in shear and transverse compression, their interaction, and their rate dependence at room temperature. The fibers are assumed to be transversely isotropic and to be distributed in a hexagonal pattern in the matrix. The PEEK matrix is modeled as an elastic–powerlaw viscoplastic, isotropic solid through two related models. Model I is the simple J2–type viscoplasticity; Model II is a rate dependent version of the non-associative Drucker-Prager model. Both models are calibrated so that they reproduce the shear response of the composite. Model II is also calibrated to its transverse compression response. Both models capture the rate dependence of the composite well. Model I is significantly less stiff in transverse compression than the experimental data. However, it does a reasonable job of predicting other aspects of the biaxial experiments and captures the important trends of behavior observed. Model II does better in transverse compression, but shearing in the presence of transverse compression is found to be stiffer than the measured responses. The unit cell model allows us to examine the stresses in the composite, providing an explanation for the lack of interaction between the constant stress and the increasing stress observed experimentally for certain loading paths.  相似文献   

6.
A model composite material system was designed to simulate typical damage mechanisms in unidirectional fiber reinforced brittle matrix composites. Experiments were performed at low to high quasistatic, macroscopic loading rates . At all loading rates reversal of the transverse strain was observed and was correlated to matrix cracking and debonding. The optical method of coherent gradient sensing (CGS) was used to obtain qualitative information regarding the stress fields and to observe the progression of damage. It was found that the sequence of damage formation (damage path) depended on the macroscopic loading rate. At lower loading rates periodic matrix cracks developed; minimal debonding of the reinforcement-matrix interface occurred only much later in the experiment. At higher loading rates extensive debonding followed propagation of the initial matrix crack, and periodic cracking was not observed. Several features of the material response of the model material system were also observed in a previously studied unidirectional ceramic matrix composite.  相似文献   

7.
This paper describes the investigation on an epoxy model of a channel cover of bleed condenser, by three-dimensional photoelasticity. The channel cover is a thick plate with two nozzles which are connected on one side to pipes carrying water vapor/water under high pressure. A flat tube plate is connected on the other side by means of sixteen bolts around the periphery with high initial bolt forces. The photoelastic model of the channel cover was made by machining a cast epoxy block (Araldite CT200). The stress distribution along critical sections of the model and the regions of maximum stresses and their values were determined. The prototype stresses were calculated from experimentally obtained values of model stresses, using simiilitude laws.  相似文献   

8.
This paper is a review of experimental and theoretical studies into the damage mechanisms in glass/epoxy and carbon/epoxy cross-ply composite laminates subjected to static or cyclic loading and their influence on the behavior and stiffness properties of such laminates. How the equivalent-constraint model is applied to the analysis of cross-ply laminates with transverse and longitudinal matrix cracks and crack-tip delaminations is shown and discussed.  相似文献   

9.
End-shaped copper fibers are placed in a brittle thermoset epoxy matrix at 10 vol% and tested in four-point bending to determine the fracture toughness of the composite. Results from four-point bend tests agree well with the theoretical predictions of the fracture toughness increment ‘ΔG’ of a metal fiber/brittle thermoset matrix composite based on single fiber pullout (SFP) tests. This close agreement demonstrates that SFP testing, along with the theoretical model, can be used as an effective end-shape screening tool for ductile fibers before full scale composite testing. The model predicts that the composite’s fracture toughness will be 46% higher with flat end-impacted fibers and 4% lower with rippled fibers compared to straight fibers at a 0° orientation. Four-point bend results show the actual composite’s fracture toughness is 49% higher with flat end-impacted fibers and 5% lower with rippled fibers compared to straight fibers. Further, four-point bend results show that end-shaped copper fibers improve both the flexural strength and modulus of the composite, demonstrating that end-shaped ductile fibers provide a good stress transfer to the fibers by anchoring the fibers into the matrix. Lastly, experimental validation of the model also indicates that at low fiber volume fractions, fiber–fiber interaction has only a minor influence on the fracture toughness for the tested ductile fiber/brittle matrix composite.  相似文献   

10.
The evolution of fiber debonding, and sliding, in fibrous laminates is modeled by a coupled micro/macro-mechanical analysis scheme. The laminates under consideration have a symmetric layup, and are subjected to mechanical loads. The individual plies are elastic, have a unidirectional reinforcement, and can suffer local damage at the fiber/matrix interface when the resolved normal and shear stresses exceed their ultimate magnitudes. The local fields in the plies are assumed to be periodic, and are approximated by the finite element method for overall loads and local resolved stresses that are in excess of the interface strength. Local effects in the individual plies are scaled up to the laminate analysis through stress transformation factors, which are a function of the elastic properties of the plies and their stacking configuration.The proposed analysis was implemented for a periodic array model of the laminas, and for in-plane loading of the laminate. The model predictions for a unidirectional steel/epoxy system subjected to transverse loading compare remarkably well with experimental measurements. This result, and several other examples given for axial and off-axis loading of SiC/CAS laminates, illustrate the model capabilities in predicting the overall strains in the presence of simultaneous, progressive debonding in the individual plies.  相似文献   

11.
This paper is a contribution to the experimental stress analysis of composite structures subjected to gravitational forces. It is proved, generally, that the immersion analogy can be used to analyze these stresses in composite bodies provided all the materials of such bodies have the same weight per unit volume. Applications are described in two-dimensional problems immersing urethane-rubber models bonded to epoxy shells in a thallium-formate solution. Photoelasticity is used to determine stresses. The method increases the response obtained and will have application in the solution of problems where constant-acceleration stresses are important, as in dams and solid-propellant rocket grains.  相似文献   

12.
The effect of fiber arrangement on transverse tensile failure in unidirectional carbon fiber reinforced composites with a strong fiber-matrix interface was studied using a unit-cell model that includes a continuum damage mechanics model. The simulated results indicated that tensile strength is lower when neighboring fibers are arrayed parallel to the loading direction than with other fiber arrangements. A shear band occurs between neighboring fibers, and the damage in the matrix propagates around the shear band when the interfacial normal stress (INS) is sufficiently high. Moreover, based on the observation of Hobbiebrunken et al., we reproduced the damage process in actual composites with a nonuniform fiber arrangement. The simulated results clarified that the region where neighboring fibers are arrayed parallel to the loading direction becomes the origin of the transverse failure in the composites. The cracking sites observed in the simulation are consistent with experimental results. Therefore, the matrix damage in the region where the fiber is arrayed parallel to the loading direction is a key factor in understanding transverse failure in unidirectional carbon fiber reinforced composites with a strong fiber/matrix interface.  相似文献   

13.
岳澄  刘亚双  丁雪松  梁园  熊刚 《实验力学》2006,21(6):710-714
通过对斜拉桥主梁模型在不同工况及施加横向预应力方案的电测试验,得出了主梁的应力分布规律。试验结果表明,箱梁的撑杆和横向预应力的设计,对箱梁顶板的应力状态有很大影响。施加斜索力后,箱梁顶板的横向拉应力均小于1MPa,除横向预应力作用区域外,箱梁顶板的纵向应力为均匀分布的压应力,若在所有撑杆截面施加横向预应力,则撑杆只出现压应力。文中的试验数据可为优化结构、不同设计方案的选择提供理论根据。同时设计了对模型施加预应力的方法,解决了模型预应力的模拟问题。  相似文献   

14.
External circumferential strains were measured on large thick-wall pressure vessels containing internal fatigue cracks, using bonded strain gages. When strains measured over the cracks become compressive they predict impending failure. Normalization by the Lamé strain relates them to the fraction of fatigue life consumed and provides estimates of longevity.  相似文献   

15.
The problem about the motion of a pressure pulse at constant velocity along the boundary of an elastic homogeneous half-plane has been examined in [1–3]. The problem was considered as stationary in [1, 2], while in [3] it was solved by using a Laplace time transformation. An analogous problem is considered in this paper for an elastic half-plane with variable Lamé parameters and density of the medium.  相似文献   

16.
Loss of adhesion at the tip of an interface crack   总被引:3,自引:0,他引:3  
A model is constructed to analyze adhesive bond failure at the tip of an interface crack. The model is based on the assumption that there are zones of bounded cohesive tensile and shear stresses near a crack tip. Within the context of certain broad a-priori assumptions on the distributions of certain stress and displacement components in the cohesive zones, the requirement thatall stresses in the two materials remain bounded provides a method to compute the specific details for these zones. It is assumed that bond failure occurs when the extension of the bond fiber at the crack tip exceeds a critical value. For an interface crack in a uniform tension field computations for two alternate formulations suggest that this failure criterion is independent of the precise distribution of the cohesive stresses, but rather depends only upon their averaged values. Combined loading with a dominant tensile component has also been analyzed. If the critical extension of bond fibers and the maximum value of the cohesive tensile stress are known, the model provides the maximum allowable interface stresses for given crack dimension and material parameters.  相似文献   

17.
18.
Scattered-light methods are presented for analysis of interlaminar matrix stresses between the fiber layers of composite models. These include data-smoothing techniques and a least-squares solution to utilize the excess information available. Applications are given to determine all stress components in the matrix of a two-layer model and to determine the interlaminar shear stress in the matrix of a four-layer model. The results indicate that matrix stress magnitudes are a function of proximity to the fibers and that they are significantly higher than composite stresses obtained using mathematical models. Paper was presented at 1975 SESA Spring Meeting held in Chicago, IL on May 11–16.  相似文献   

19.
吴永礼 《力学学报》2000,32(6):727-738
对非理想界面的三相复合材料,提出了计算弹性应力场的微观力学模型,在适当的简化假设下,对带界相的颗粒增强和纤维增强复合材料,得到了应力场的计算公式。以剪切载荷为例给出了数值例子。给出的数值结果表明非理想界面对三相复合材料应力场的影响。  相似文献   

20.
The effect of the fiber to matrix modulus of elasticity ratio varying from 1.0 to 200 was investigated for a two-dimensional plane-stress composite configuration having a simulated fiber volume fraction of 0.45 and containing a discontinuous fiber. Uniaxial loading parallel to the fibers was considered. Two independent techniques were used: moiré strain analysis and finite-element analysis. Displacements were measured from four experimental models by utilizing optical fringe-multiplication techniques. The finite-element method yielded stresses which agreed closely with those obtained from the experimental analysis. Matrix stress-concentration factor near the discontinuous fiber was found to increase rapidly with increasing modulus ratio, reaching a value of 20 for a modulus ratio of 200. The finite-element method was shown to be a valuable tool for micromechanical stress analysis of composite materials, and the accuracy of strain analysis by moiré-fringemultiplication techniques was demonstrated for problems containing sever strain gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号