首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
For an infinite solid containing a void, the cavitation instability limit is defined as the remote stress–and strain state, at which the void grows without bound, driven by the elastic energy stored in the surrounding material. Such cavitation limits have been analysed by a number of authors for metal plasticity as well as for nonlinear elastic solids. The analyses for elastic–plastic solids are here extended to consider the effect of a large initial yield strain, and it is shown how the critical stress value decays for increasing value of the yield strain. Analyses are carried out for remote hydrostatic tension as well as for more general axisymmetric remote stress field, with an initially spherical void. Different levels of strain hardening are considered.  相似文献   

2.
A macroscopic yield function for porous solids with pressure-sensitive matrices modeled by Coulomb's yield function was obtained by generalizing Gurson's yield function with consideration of the hydrostatic yield stress of a spherical thick-walled shell and by fitting the finite element results of the yield stresses of a voided cube. The macroscopic yield function is valid for the negative hydrostatic stress as well as for the positive hydrostatic stress. From the yield function, a plastic potential function for the porous solids was derived either for plastic normality flow or for plastic non-normality flow of the pressure-sensitive matrices. In addition, void nucleation was modeled by a normal distribution function with the macroscopic hydrostatic stress regarded as a controlling stress. This set of constitutive relations was implemented into a finite element code abaqus as a user material subroutine to analyze the cavitation and the deformation behavior of a rubber-modified epoxy around a crack tip under the Mode I plane strain conditions. By comparing the cavitation zone and the plastic zone obtained in the analysis with those observed in an experiment, the mean stress and the standard deviation for the void nucleation model could be determined. The cavitation and the deformation behavior of the rubber-modified epoxy were also analyzed around notches under four-point bending. The size and shape of the cavitation zone and the plastic zone were shown to be in good agreement with those observed in an experiment.  相似文献   

3.
An extensive suite of experiments was conducted to characterize the mechanical response of an S-2 glass composite. The primary interest was the response of a 3-D composite, consisting of unidirectional (non-woven) layers of glass fibers interlaced by through-thickness Z-yarns. A plain-weave material was also characterized for comparison purposes. Additionally, epoxy-only specimens were fabricated to assist in understanding the contribution of the SC-15 epoxy resin in the response of the composite system. Two new specimen geometries (torsion and hourglass) were developed specifically for this characterization effort. The response of these specimens provides considerable insight into the failure mechanics of the plain weave and 3-D weave composites. It was shown that the matrix material has an elastic-plastic response, but with different strengths in tension and torsion. The response of the composite in tension is controlled by the epoxy until failure at the glass-resin interface. The strength falls to zero for the plain-weave composite, but the Z-yarns can support tensile stress until the yarns begin to fail. The fibers contribute to the elastic stiffness in shear for the plain-weave material, but the failure strength in shear is the same as the matrix. The 3-D weave composite also fails at the failure strength of the matrix, but retains some shear strength because of the Z-yarns.  相似文献   

4.
To achieve certain properties, semiconductor adhesives and molding compounds are made by blending filler particles with polymer matrix. Moisture collects at filler particle/polymer matrix interfaces and within voids of the composite. At reflow temperatures, the moisture vaporizes. The rapidly expanding vapor creates high internal pressure on pre-existing voids and particle/matrix interfaces. The simultaneous action of thermal stresses and internal vapor pressure drives both pre-existing and newly nucleated voids to grow and coalesce causing material failure. Particularly susceptible are polymeric films and adhesives joining elastic substrates, e.g. Ag filled epoxy. Several competing failure mechanisms are studied including: near-tip void growth and coalescence with the crack; extensive void growth and formation of an extended damaged zone emanating from the crack; and rapid void growth at highly stressed sites at large distances ahead of the crack, leading to multiple damaged zones. This competition is driven by the interplay between stress elevation induced by constrained plastic flow and stress relaxation due to vapor pressure assisted void growth.A model problem of a ductile film bonded between two elastic substrates, with a centerline crack, is studied. The computational study employs a Gurson porous material model incorporating vapor pressure effects. The formation of multiple damaged zones is favored when the film contains small voids or dilute second-phase particle distribution. The presence of large voids or high vapor pressure favor the growth of a self-similar damage zone emanating from the crack. High vapor pressure accelerates film cracking that can cause device failures.  相似文献   

5.
经典唯象强度理论适用于正交各向异性线弹性体。对于非线性纤维增强复合材料,通过加卸载试验和损伤力学的分析方法,可以得到一种虚拟的线性化应力-应变关系;依据损伤等效假设,针对线性损伤和非线性损伤,对基于应力的经典二次失效准则进行变换,建立了一种基于损伤的强度理论,即“D失效判据”,这一强度理论可以作为经典判据的补充和扩展。针对平纹编织C/SiC复合材料的拉/剪组合试验,进行了实例计算,结果表明:利用D失效判据预测的失效包络线比蔡-希尔准则的预测曲线低,而且,失效曲线的形式与材料的损伤演化规律相关。  相似文献   

6.
本文首先通过落锤低速冲击实验测试了纯玻璃纤维增强环氧树脂复合材料和304不锈钢丝网(SSWM)/玻璃纤维混杂复合材料的力学性能,探究了SSWM嵌入数量对混杂复合材料抗冲击性能的影响.随后采用Abaqus有限元软件建立了混杂复合材料的低速冲击模型,分别采用三维Hashin失效准则和Jason-Cook破坏准则模拟了纤维/基体和SSWM的损伤;建立了基于表面接触的内聚力模型来模拟界面分层;编写了VUMAT用户子程序定义混杂复合材料层合板的渐进失效过程.结果表明:相较于纯玻璃纤维增强环氧树脂层合板,SSWM/玻璃纤维混杂增强环氧树脂层合板的抗冲击性能更优,其中铺层形式为铺层III的混杂复合材料抗冲击性能最佳.通过对比发现有限元仿真结果与实验结果吻合良好,表明建立的模型适用于SSWM/玻璃纤维混杂增强环氧树脂复合材料低速冲击损伤的评估.通过分析仿真结果发现混杂复合材料的低速冲击损伤主要是冲击区域的纤维断裂、基体破坏和层间分层;SSWM通过吸收和传递冲击能量从而提升了混杂复合材料的抗冲击性能.  相似文献   

7.
Magnesium alloys AE42 and AZ91 reinforced with 23 vol.% carbon short fibers (Df ≈ 7 μm, Lf ≈ 100 μm) were tested under quasi-static loading. The carbon fibers were quasi-isotropically distributed in the horizontal plane (reinforced plane) of the casting. Compression and tensile tests were carried out on both the matrix alloys and the composites at temperatures between 20 °C and 300 °C. Specimens were machined to be loaded either parallel or normal to the reinforced plane. Due to the reinforcement, the compression yield stress of the composite AE42-C increased to a value approximately three-fold greater than the yield strength of the matrix; for composite AZ91-C this parameter was approximately 2.5-fold greater than that of the AZ91 matrix. The improvement in tensile strength was less than that in compression, which could be related to early tensile fracture through decohesion at the matrix–fiber interface, as detected by SEM investigations conducted on failed tensile specimens. Flow curves for the matrix alloys at different temperatures were described by a modified Kocks–Mecking material law. An idealization of a 2-D mesomodel was used for finite-element simulation of the mechanical behavior of the composites. The fibers were first considered as elastic bodies and the behavior of the matrix material was set according to the material law determined from the flow curves for the matrix alloys. Other calculations were carried out by considering elasto-plastic behavior of the fibers for application of a failure initiation technique to simulate the behavior of the composite materials beyond the ultimate stress.  相似文献   

8.
Particle-reinforced polymers are widely used in load-carrying applications. The effect of particle size on damage development in the polymer is still relatively unexplored. In this study, the effect of glass-sphere size on the damage development in tensile loaded epoxy has been investigated. The diameter of the glass spheres ranged from approximately 0.5–50 μm. The first type of damage observed was debonding at the sphere poles, which subsequently grew along the interface between the glass spheres and epoxy matrix. These cracks were observed to kink out into the matrix in the radial direction perpendicular to the applied load. The debonding stresses increased with decreasing sphere diameter, whereas the length to diameter ratio of the resulting matrix cracks increased with increasing sphere diameter. These effects could not be explained by elastic stress analysis and linear-elastic fracture mechanics. Possible explanations are that a thin interphase shell may form in the epoxy close to the glass spheres, and that there is a length-scale effect in the yield process which depends on the strain gradients. Cohesive fracture processes can contribute to the influence of sphere size on matrix-crack length. Better knowledge on these underlying size-dependent mechanisms that control damage development in polymers and polymer composites is useful in development of stronger materials. From a methodology point of view, the glass-sphere composite test can be used as an alternative technique (although still in a qualitative way) to hardness vs. indentation depth to quantify length-scale effects in inelastic deformation of polymers.  相似文献   

9.
Short duration stress pulses are of particular interest in determining the interfacial crack tip instability criteria for the dynamic fracture behavior of laminated carbon-fiber/epoxy composites. However, the heterogeneous architectures of laminated composites can alter the characteristics of a stress pulse as it propagates toward a crack tip. This makes it difficult to use standard dynamic testing techniques for characterizing these materials, since these techniques assume the characteristics of the stress pulse do not change as a result of propagation and can therefore be unambiguously determined from impact conditions. This paper presents a novel experimental technique that has been developed for characterizing short duration stress pulse propagation in laminated composite materials. In this technique, a dynamic moiré interferometer is used to capture fringe patterns corresponding to displacement fields associated with short duration stress pulses that were generated by impacting 0° and 90°/0°/90° carbon-fiber/epoxy composites with a magnetic flyer plate. Appropriate dynamic testing conditions for capturing high fidelity fringe patterns were determined using the recently developed dynamic moiré fringe contrast factor. The effects of the composite architecture on the propagation of short duration stress pulses observed with the dynamic moiré interferometer were confirmed by transient dynamic finite element analysis. From comparisons of experimental and numerical data, it was determined that the impact conditions for the magnetic flyer plate and laminated composite will not necessarily be planar, which has a significant effect on the intensity and duration of the propagating stress pulse.  相似文献   

10.
纤维增强韧性基体界面力学行为   总被引:4,自引:1,他引:3  
分析了纤维增强韧性基体的界面力学行为及其失效机理,按剪滞理论和应变理化规律研究微复合材料的弹塑性变形和应力状态,讨论了幂硬化和线性硬化基体的弹塑性变形和界面应力分布,并给出纤维应力和位移的表达式。按最大剪应力强度理论建立了纤维/基体界面失效准则,推导出弹塑性界面失效的平均剪应力随纤维埋入长度的变化关系。  相似文献   

11.
Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress–strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic–plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic–plastic stress–strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than ?1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic–plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic–plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between microstructure and macroscopic behavior, this model should be extendable to other electrospun systems and other two dimensional random fibrous networks.  相似文献   

12.
连续介质力学中,各向同性材料的力学理论已基本成熟,即,对任何一个各向同性材料的力学问题,人们几乎总能从现有理论中找到有效解决方案,但对各向异性材料暨复合材料而言,只有线弹性理论才基本成熟,复合材料的塑性变形、破坏和强度等问题,都还缺少成熟分析方法。根本原因是,现有理论只能得到纤维和基体中的均值应力,复合材料的塑性、破坏和强度分析,都必须基于基体的真实应力。本文对作者创建和发展的基体真实应力理论进行了综述介绍,并简要指出了真实应力理论在复合材料破坏和强度分析中所起的作用。  相似文献   

13.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   

14.
The present paper is concerned with the numerical modelling of the large elastic–plastic deformation behavior and localization prediction of ductile metals which are sensitive to hydrostatic stress and anisotropically damaged. The model is based on a generalized macroscopic theory within the framework of nonlinear continuum damage mechanics. The formulation relies on a multiplicative decomposition of the metric transformation tensor into elastic and damaged-plastic parts. Furthermore, undamaged configurations are introduced which are related to the damaged configurations via associated metric transformations which allow for the interpretation as damage tensors. Strain rates are shown to be additively decomposed into elastic, plastic and damage strain rate tensors. Moreover, based on the standard dissipative material approach the constitutive framework is completed by different stress tensors, a yield criterion and a separate damage condition as well as corresponding potential functions. The evolution laws for plastic and damage strain rates are discussed in some detail. Estimates of the stress and strain histories are obtained via an explicit integration procedure which employs an inelastic (damage-plastic) predictor followed by an elastic corrector step. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. A variety of large strain elastic–plastic-damage problems including severe localization is presented, and the influence of different model parameters on the deformation and localization prediction of ductile metals is discussed.  相似文献   

15.
The aim of the paper is to develop a micro–macro approach for the analysis of the mechanical behavior of composites obtained embedding long fibers of Shape Memory Alloys (SMA) into an elastic matrix. In order to determine the overall constitutive response of the SMA composites, two homogenization techniques are proposed: one is based on the self-consistent method while the other on the analysis of a periodic composite. The overall response of the SMA composites is strongly influenced by the pseudo-elastic and shape memory effects occurring in the SMA material. In particular, it is assumed that the phase transformations in the SMA are governed by the wire temperature and by the average stress tensor acting in the fiber. A possible prestrain of the fibers is taken into account in the model.Numerical applications are developed in order to analyze the thermo-mechanical behavior of the SMA composite. The results obtained by the proposed procedures are compared with the ones determined through a micromechanical analysis of a periodic composite performed using suitable finite elements.Then, in order to study the macromechanical response of structural elements made of SMA composites, a three-dimensional finite element is developed implementing at each Gauss point the overall constitutive laws of the SMA composite obtained by the proposed homogenization procedures. Some numerical applications are developed in order to assess the efficiency of the proposed micro–macro model.  相似文献   

16.
The fiber push-out test is a basic method to probe the mechanical properties of the fiber/matrix interface of fiber-reinforced metal matrix composites. In order to estimate the interfacial properties, parameters should be calibrated using the measured load–displacement data and theoretical models. In the case of a soft matrix composite, the possible plastic yield of the matrix has to be considered for the calibration. Since the conventional shear lag models are based on elastic behavior, a detailed assessment of the plastic effect is needed for accurate calibration. In this paper, experimental and simulation studies are presented regarding the effect of matrix plasticity on the push-out behavior of a copper matrix composite with strong interface bonding. Microscopic images exhibited significant local plastic deformation near the fibers leading to salient nonlinear response in the global load–displacement curve. For comparison, uncoated interface with no chemical bonding was also examined where the nonlinearity was not observed. A progressive FEM simulation was conducted for a complete push-out process using the cohesive zone model and inverse fitting. Excellent coincidence was achieved with the measured push-out curve. The predicted results confirmed the experimental observations.  相似文献   

17.
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. “Exact” results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.  相似文献   

18.
A computationally economic finite-element-based approach has been developed to predict the stress–strain and fracture behaviour of an 8-Harness satin woven ceramic matrix composite with strain-induced damage. The finite element analysis utilises a solid element to model the behaviour of the homogenised orthotropic uni-directional tow and its matrix. The underpinning models of the tow and matrix, (Tang et al., 2009) capture the physics of the interactions between fibres and matrix; and, in this way, permit modelling that bridges the length scales of the fibres and full-scale components. The non-linear multi-axial stress–strain behaviour of the composite has been discretised by multi-linear elastic curves; and the latter has been used as input to a user defined subroutine, UMAT, in the commercial finite element package, ABAQUS. A partial unit cell model has been constructed of the 8-Harness satin weave composite of carbon fibres embedded in an amorphous carbon matrix, HITCO C/C. Predictions of the global stress–strain curve, which include the effects of fibre waviness, have been made for two failure modes: the first by deformation localisation, and the second by dynamic tow failure on fibre fracture, triggered by instantaneous pull-out deactivation. Comparisons have been made between the predictions and experimental data that exhibit two classes of fracture behaviour: brittle and quasi-ductile. The predicted results, both with and without tow waviness, compare well with the experimental data; however, the predictions for waviness are slightly better. The two extremes of experimental behaviour have been found to correspond with the two tow fracture criteria modelled.  相似文献   

19.
In this paper, a methodology has been developed to accurately predict the elastic properties of multi-constituent particulate composites by accounting for irreversible effects, such as energy loss that arises due to internal friction. The complex dependence on loading density and particle properties (i.e., size, shape, morphology, etc.) is investigated in terms of their effects on the effective elastic modulus of the composite. Confirmed by experimental data from the compression loading of individual Ni and Al particles dispersed in an epoxy matrix, it is believed that this approach captures the effects of internal friction, consequently providing a more accurate and comprehensive representation for predicting and understanding the material behavior of multi-constituent particulate reinforced composites. The present methodology provides a model to directly compare the elastic modulus from an uncomplicated test, such as dual-cantilever beam loading in dynamic mechanical analysis (DMA), to the modulus obtained by other more complex experimental methods such as quasi-static compression. The model illustrates an efficient method to incorporate input data from DMA to represent realistic elastic moduli, hence promising for the characterization and design of particulate composites.  相似文献   

20.
We investigate the effective viscoelastic performance of particle-reinforced composite materials whose particulate phase undergoes a material instability resulting in temporarily non-positive-definite elastic moduli. Recent experiments have shown that phase transitions in geometrically-constrained composite phases (such as in particles embedded in a stiff matrix) can lead to stable non-positive-definite elastic moduli, and they hinted at strong damping increases that can be achieved from such metastable composite phases. All previous theoretical efforts to explain such phenomena have used simplistic one-dimensional models or they were based on composite bounds and specific two-phase solids. Here, we study particle–matrix composites with periodic randomized particle dispersion. A finite element discretization is used in combination with a sophisticated nonlinear solver in order to perform the numerous calculations in a feasible amount of computing time. Our computational analysis shows that stable non-positive-definite inclusion moduli can indeed lead to extreme damping increases (i.e. greatly exceeding the intrinsic damping of each composite phase) and that such extreme damping arises from a shift in microstructural mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号