首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
郭强  沈惠申 《力学季刊》2004,25(3):355-361
基于Reissner-Mindlin一阶剪切变形板理论,讨论在预加面内机械荷载或温度场作用下,点支撑中厚矩形板的弯曲问题。温度场假定沿板表面为均布,沿板厚方向为线性分布的。利用考虑剪切变形影响的Timoshenko梁函数,采用Rayleigh-Ritz法给出不同边界条件下点支撑中厚板在横向荷载作用下的挠度和弯矩分布。结果表明,均匀温度场与预加面内压力将使板的挠度和弯矩增加。支撑点位置的变化、边界约束条件和横向剪切变形效应都对板的内力大小和分布有显著影响。  相似文献   

2.
This paper describes a photothermoelastic method for simulating, in a three-dimensional model, the temperature gradients that occur in structural parts subjected to internal heating such as is frequently encountered in certain areas of nuclear-reactor design. The method is applied to a plate which has a step change in thickness and sustains a nonlinear temperature gradient through its thickness. The shapes of the gradients simulate internal heating of the plate material. The values for the highest stresses on the free surfaces of the plate, within the thickness of the plate, and at the root of the step are presented in graphical form for a range of internal heat-generated conditions. Thermal-stress-concentration factors are presented for a step change in the thickness of a plate under this type of heating. Its design significance is discussed. The same stress and stress-concentration values are shown to also apply to nonnuclear problems. During shut-down in conventional thermal plants, when the walls sustain linear steady-state temperature drops across their thicknesses, temperature profiles exactly analogous to those presented in this paper occur. The stresses can then be computed from the values presented here.  相似文献   

3.
The forced monoharmonic bending vibrations and dissipative heating of a piezoelectric circular sandwich plate under monoharmonic mechanical and electrical loading are studied. The core layer is passive and viscoelastic. The face layers (actuators) are piezoelectric and oppositely polarized over the thickness. The plate is subjected to harmonic pressure and electrical potential. The viscoelastic behavior of the materials is described by complex moduli dependent on the temperature of heating. The coupled nonlinear problem is solved numerically. A numerical analysis demonstrates that the natural frequency, amplitude of vibrations, mechanical stresses, and temperature of dissipative heating can be controlled by changing the area and thickness of the actuator. It is shown that the temperature dependence of the complex moduli do not affect the electric potential applied to the actuator to compensate for the mechanical stress __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 1, pp. 79–89, January 2008.  相似文献   

4.
This paper presents a study on the buckling and vibration of initially stressed composite plates with temperature-dependent material properties in thermal environments. The initial stress is taken to be a combination of a pure bending stress and an axial stress. The temperature distribution in the plate is assumed to be uniform and linear in the transverse direction. The governing equations including the transverse shear deformation effects are established using the variational method. The effects of various parameters on the buckling and vibration behaviors of laminated plates with respective temperature-dependent and temperature-independent material properties are investigated. The buckling load and natural frequency are sensitive to the thermal stresses and initial stresses. Numerical results reveal that temperature-dependent material properties should be considered in the buckling and vibration analysis for laminated plates under thermal conditions.  相似文献   

5.
The paper describes and evaluates an easy experimental method for subjecting the edges of photoelastic plate models to severe and repeatable thermal shock. It presents the development, with time, of the photoelasticfringe pattern at the edge of a plate and shows that this method simulates thermal-shock conditions in metallic materials of an intensity that is exceeded only under the most severe practical conditions. The resultant edge stresses are shown to increase to maximum values and then decrease with time as conditions shift from essentially plane strain to plane stress.  相似文献   

6.
轴对称热载作用厚板的热弹性运动效应分析   总被引:2,自引:2,他引:2  
对板的上下表面存在一般温度边界条件的情况,解出了板表面受轴对称热辐射作用时,板内轴对称二维瞬态温度场的一般表达式;导出了厚板的热弯曲运动和热平面运动的位移型动力学方程,得出了板的挠度、转角和平面径向位移的无穷积分型公式;提出了一个求解弯曲波传播速度的方法;然后完成了一个代表性算例分析,给出了弯曲波传播规律的直观图象,得出了热加载和热卸载过程中,板内热弯曲波的时空变化特点;找出了剪切变形和旋转惯性对弯曲波传播速度的影响规律;最后,将理论结果与相应的实验结果进行了比较,两者吻合良好。  相似文献   

7.
In this paper transient thermal stresses in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on classical theory of thermoelasticity are considered. The volume fraction distribution of materials, geometry and thermal load are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure. Temperature, displacements and stress distributions through the cylinder at different times are investigated. Also the effects of variation of material distribution in two radial and axial directions on the thermal stress distribution and time responses are studied. The achieved results show that using 2D-FGM leads to a more flexible design so that time responses of structure, maximum amplitude of stresses and uniformity of stress distributions can be modified to a required manner by selecting suitable material distribution profiles in two directions.  相似文献   

8.
Summary The bending of a thick rectangular plate with all the edges completely clamped is analyzed by the three-dimensional theory of elasticity. A partially distributed uniform load over the top face is dealt within the analysis. The boundary conditions of the completely clamped edges are prescribed by three-dimensional, exact conditions that three displacement components vanish at the faces. The stress distributions at the edges are minutely examined by making the best use of advantages of the exact analysis. The stress distributions for the case of a fully distributed uniform load are compared with those obtained by Reissner's theory. The values of deflections and internal forces for various thickness-length ratios are also presented. Accepted for publication 5 June 1997  相似文献   

9.
厚圆板轴对称振动的弹性力学解   总被引:2,自引:0,他引:2  
徐旭  何福保 《力学季刊》2000,21(1):59-65
本文以轴对称三维弹性力学基本方程为基础,导出厚圆板强迫振动的状态方程式。利用Maclaurin级数和Sylvester定理,厚圆板的位移和应力可以用中面位移和应力的微分算子表示。通过载荷分解和圆板表面条件,可以得到厚圆板在对称载荷与反对称载荷作用下的振动控制方程。求解了厚圆板在周边固支和简支条件下的对称与反对称的自由振动问题。通过数值计算得到了这两类自由振动的固有频率。本文的方法适用于求解厚圆板在  相似文献   

10.
In order to construct a plate theory for a thick transversely compressible sandwich plate with composite laminated face sheets, the authors make simplifying assumptions regarding distribution of transverse strain components in the thickness direction. The in-plane stresses and σyy (Fig. 1) are computed from the constitutive equations, and the improved values of transverse stress components and σzz need to be computed by integration of pointwise equations of motion in a post-process stage of the finite element analysis. The improved values of the transverse strains can also be computed in the post-process stage by substituting the improved transverse stresses into the constitutive relations. A problem of cylindrical bending of a simply supported plate under a uniform load on the upper surface is considered, and comparison is made between the displacements, the in-plane stress and the improved transverse stresses (obtained by integration of the pointwise equations of motion), computed from the plate theory, with the corresponding values of exact elasticity solutions. In this comparison, a good agreement of both solutions is achieved. In the finite element analysis of sandwich plates in cylindrical bending with small thickness-to-length ratios, the shear locking phenomenon does not occur. The model of a sandwich plate in cylindrical bending, presented in this paper, has a wider range of applicability than the models presented in literature so far: it can be applied to the sandwich plates with a wide range of ratios of thickness to the in-plane dimensions, with both thin and thick face sheets (as compared to the thickness of the core) and to the sandwich plates with both transversely rigid and transversely compressible face sheets and cores.  相似文献   

11.
The paper addresses the method of determining the two-dimensional thermal stresses in a rectangular isotropic plate or a long bar with arbitrary temperature distribution in the plane and with no variation in temperature through the thickness is presented. The thermal stress have been obtained by the superposition method in terms of Fourier series that satisfy the differential equation and the boundary conditions. The method is illustrated by two examples. The distribution of stresses along some typical lines in the rectangle are computed and the possibilities of approximate solutions are estimated.  相似文献   

12.
段铁城  李录贤 《力学学报》2016,48(5):1096-1113
已有多种厚板理论和高阶剪切变形模型,但仍需要进一步研究以更加完善.首先根据平均转角及上下表面剪应力自由这两个条件,提出了具有统一高阶剪切变形模型的中面位移模式,并将之表示为正交分解形式.根据正交特性,定义了板的广义应力;运用板问题应变能密度表示的等价性,提出了与广义应力功共轭的广义应变表示形式,建立了板的本构关系.证明了不同转角定义时虚功原理板理论表示的客观性,以及与三维弹性理论表示的等价性.运用虚功原理,建立了变分自洽的高阶厚板理论和变分渐近的低阶厚板理论,推导了相应的平衡方程及边界条件,分析了与已有板理论的异同.以广义应力形式建立了厚板理论的平衡方程,厘清了不同转角表示时板理论间的关系、低阶厚板理论与高阶厚板理论间的关系以及剪切系数计算等若干基本问题.对圣维南扭转问题的求解证明了该理论的正确性.   相似文献   

13.
This article is concerned with the theoretical analysis of the functionally graded magneto-electro-thermoelastic strip due to unsteady and nonuniform surface heating in the width direction. We analyze the transient thermal stress problem for a functionally graded strip constructed of the anisotropic and linear magneto-electro-thermoelastic materials using a laminated composite mode as one of theoretical approximation. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the solution for the simply supported and functionally graded magneto-electro-thermoelastic strip under a plane strain state. As an illustration, we carried out numerical calculations for a functionally graded strip composed of piezoelectric BaTiO3 and magnetostrictive CoFe2O4, and examined the behaviors in the transient state for temperature change, stress, electric potential and magnetic potential distributions. Furthermore, the effects of the nonhomogeneity of material on the stresses, electric potential, and magnetic potential are investigated.  相似文献   

14.
An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces. Material properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instantaneous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature, displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two constituents, volume fraction profiles and the two homogenization schemes.  相似文献   

15.
An accurate prediction of displacements and stresses for laminated and sandwich plates is presented using an enhanced first-order plate theory based on the mixed variational theorem (EFSDTM) developed in this paper. In the mixed formulation, transverse shear stresses based on an efficient higher-order plate theory (EHOPT) developed by Cho and Parmerter [Cho, M., Parmerter, R.R., 1993. Efficient higher-order composite plate theory for general lamination configurations. AIAA Journal 31, 1299–1306] are utilized and modified to satisfy prescribed lateral conditions, and displacements are assumed to be those of a first-order shear deformation theory (FSDT). Relationships between the modified EHOPT and the FSDT are systematically derived via both the mixed variational theorem and the least-square approximation of difference between in-plane stresses including the transverse normal stress effect. It is shown that the transverse normal stress effect should be considered in predicting the in-plane stresses when the Poisson effect is dominant. The developed EFSDTM preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure. The accuracy and efficiency of the present theory are assessed by comparing its results with various plate models as well as the three-dimensional exact solutions for thick laminated and sandwich plates.  相似文献   

16.
Two-dimensional problems of finite-length blunted cracks cut into infinite plates subject to remote tractions are solved using complex variable theory. The slot geometry is composed of two flat surfaces connected by rounded ends. This special geometrical shape was derived by Riabouchinsky in the study of two-dimensional ideal fluid flow around parallel plates. The simpler antiplane slotted plate problem is addressed initially for this geometry. From this exact solution, the equivalent of a Westergaard stress potential is found and applied to the two other principal modes of fracture, which are plane elasticity problems. For a plate subject to uniform radial tension at infinity, an analytical solution is obtained that will reduce to the familiar mode I singular crack solution as the separation between the parallel faces of the slot becomes zero. For finite-width mode I slots, the rounded ends have tensile tractions which terminate at the adjoining flat surfaces of the slot, which remain traction-free. In this respect, the finite-width mode I slot problem resembles a Barenblatt cohesive zone model of a plane crack or a Dugdale plastic strip model of a plane crack, although the tractions will vary in magnitude along the slot ends rather than remaining uniform as in the former type of crack problems. Similarly, in the case of the finite-width mode II slot problem, the rounded ends of the slot have shear tractions, while the flat surfaces remain load-free. A distinguishing feature of the mode II slot solution over the mode I slot problem is that the maximum in-plane shear stress is constant along the rounded ends of the slot. Because of this, those particular regions of the boundary can represent incipient plastic yield based on either the Mises or Tresca yield condition under plane strain loading conditions. In this way, the problem resembles the plastic strip models of Dugdale, Cherepanov, Bilby-Cottrell-Swinden, and others. Notably, the mode III slot problem also has a constant maximum shear stress along the curved portions of the slot, while the entire slot boundary remains traction-free, unlike the mode II slot problem. Consequently, the mode III slot problem represents both a generalization of the standard mode III crack problem geometry, while simultaneously satisfying the boundary conditions of a plastic strip model.  相似文献   

17.
机械载荷作用下单边裂纹载流薄板的应力场   总被引:1,自引:0,他引:1  
采用坐标变换的方式,将单边裂纹载流薄板通电瞬间由温度产生的应力场表达式中的各应力分量分离,并用极坐标进行表示.给出了Ⅰ型穿透裂纹尖端附近的应力场的表达式.最后将温度产生的应力场与单向拉伸载荷作用产生的应力场相叠加,推导出用极坐标表示的机械载荷作用下单边裂纹载流薄板的应力场的表达式,并给出算例.  相似文献   

18.
The unsteady flow over a plane wall which is initially at rest and the plate begins suddenly to oscillate in own plane is considered. The solution subject to the boundary and initial conditions is obtained by applying to the governing equation the Laplace transform method or Fourier transform method. A comparison of the solutions obtained by two transform methods for flow considered is given. It is shown that the solution obtained by the Laplace transform method or Fourier transform method is the sum of the steady-state and the transient parts. The transient parts are found in terms of definite integrands whose integrals are oscillatory functions. Therefore, the transient parts are expressed in terms of the tabulated functions.  相似文献   

19.
有限长厚壁管在过冷沸腾状态下的热应力响应   总被引:1,自引:0,他引:1  
在求得有限长厚壁管水淬时瞬态温度分布的基础上[1],引入了包含相变的热弹塑性本构方程的增量形式.用有限元法求得了瞬态热应力和残余应力.对影响热应力和残余应力的各种因素进行了分析和讨论.  相似文献   

20.
ABSTRACT

A postbuckling analysis is presented for a moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading, and resting on a softening nonlinear elastic foundation. The cases of (1) thermal postbuckling of initially compressed plates and (2) compressive post-buckling of initially heated plates are considered. The initial geometrical imperfections of the plates are taken into account. Formulations are based on Reissner-Mindlin plate theory, considering first-order shear deformation effects, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples include the performance of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. Typical results are presented in dimensionless graphical form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号