首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of liquid droplets onto spherical stationary solid particles under isothermal conditions is simulated. The CFD model solves the Navier-Stokes equations in three dimensions and employs the Volume of Fluid Method (VOF) coupled with an adaptive local grid refinement technique able to track the liquid-gas interface. A fast-marching algorithm suitable for the quick computation of distance functions required during the grid refinement in large 3-D computational domains is proposed. The numerical model is validated against experimental data for the case of a water droplet impact onto a spherical particle at low We number and room temperature conditions. Following that, a parametric study is undertaken examining (a) the effect of Weber number (= ρu2Do/σ) in the range of 8 to 80 and (b) the droplet to particle size ratio ranging in-between 0.31 and 1.24, on the impact outcome. This has resulted to the identification of two distinct regimes that form during droplet-particle collisions: the partial/full rebound and the coating regimes; the latter results to the disintegration of secondary satellite droplets from elongated expanding liquid ligaments forming behind the particle. Additionally, the temporal evolution of variables of interest, such as the maximum dimensionless liquid film thickness and the average wetting coverage of the solid particle by the liquid, have been quantified. The present study assists the understanding of the physical processes governing the impact of liquids onto solid spherical surfaces occurring in industrial applications, including fluid catalytic cracking (FCC) reactors.  相似文献   

2.
In this paper, we introduce numerical methods that can simulate complex multiphase flows. The finite volume method, applying Cartesian cut-cell is used in the computational domain, containing fluid and solid, to conserve mass and momentum. With this method, flows in and around any geometry can be simulated without complex and time consuming meshing. For the fluid region, which involves liquid and gas, the ghost fluid method is employed to handle the stiffness of the interface discontinuity problem. The interaction between each phase is treated simply by wall function models or jump conditions of pressure, velocity and shear stress at the interface. The sharp interface method “coupled level set (LS) and volume of fluid (VOF)” is used to represent the interface between the two fluid phases. This approach will combine some advantages of both interface tracking/capturing methods, such as the excellent mass conservation from the VOF method and good accuracy of interface normal computation from the LS function. The first coupled LS and VOF will be generated to reconstruct the interface between solid and the other materials. The second will represent the interface between liquid and gas.  相似文献   

3.
The objective of this study relates to the numerical simulation of the free surface during the two-dimensional flow and solidification of aluminum in the horizontal cylinder and mold cavity of the high pressure die casting HPDC machine with cold chamber. The flow is governed by the Navier–Stokes equations (the mass and the momentum conservations) and solved in the two phase’s liquid aluminum and air. The tracking of the free surface is ensured by the VOF method. The equivalent specific heat method is used to solve the phase change heat transfer problem in the solidification process. Considering the displacement of the plunger, the geometry of the problem is variable and the numerical resolution uses a dynamic grid. The study examines the influence of the plunger speed on the evolution of the interface aluminum liquid–air profile, the mass of air imprisoned and the stream function contours versus time. Filling of a mold is an essential part of HPDC process and affects significantly the heat transfer and solidification of the melt. For this reason, accurate prediction of the temperature field in the system can be achieved only by including simulation of filling in the analysis.  相似文献   

4.
Fiber-reinforced composite materials are often composed of fibers collected in bundles that are stitched together. During the impregnation of a fibrous preform by a liquid resin, the multiscale porous medium leads to an heterogenous flow front, and therefore bubbles may be created and entrapped. Indeed, for a wetting system, capillary pressure is higher inside bundle, due to the microspace between fibers, than outside the bundles that represent the macrospace, thus, inducing an overflow between both pore scales. Motivated by the prediction of bubble formation during fiber fabric infiltration for composite materials, we attempt to determine the bubble rate in imbibition through a simple model network with two connected capillaries, called ??Pore Doublet Model?? (PDM). Our system is composed of two parts: a first part, continuously interconnected, in which the suppling mass to the microchannel from the macrochannel occurs, and a second part connected only by nodes. To quantify the leading flow front, a theoretical model based on the supplying principle and arranged Washburn equation is proposed. This approach has been conducted for wetting liquids, Newtonian flows, incompressible fluids and pores, no inertial and gravitational forces and no dynamic contact angle. The geometrical variability (channel radius and length) and the different configuration of connections (continuous and discrete) influence the entrapped bubble rate, leading to either microbubble in the microchannel or macrobubble in the macrochannel. The outcomes can contribute to the knowledge of void formation especially during the filling of fibrous preforms and may extend the previous works on the PDM in general.  相似文献   

5.
We implement a volume-of-fluid algorithm with a parabolic re-construction of the interface for the calculation of the surface tension force (VOF-PROST). This achieves higher accuracy for drop deformation simulations in comparison with existing VOF methods based on a piecewise linear interface re-construction. The algorithm is formulated for the Giesekus constitutive law. The evolution of a drop suspended in a second liquid and undergoing simple shear is simulated. Numerical results are first checked against two cases in the literature: the small deformation theory for second-order liquids, and an Oldroyd-B extensional flow simulation. We then address the experimental data of Guido et al. (2003) for a Newtonian drop in a viscoelastic matrix liquid. The data deviate from existing theories as the capillary number increases, and reasons for this are explored here with the Oldroyd-B and Giesekus models.  相似文献   

6.
This paper proposes a hybrid volume-of-fluid (VOF) level-set method for simulating incompressible two-phase flows. Motion of the free surface is represented by a VOF algorithm that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. The VOF method is specifically based on a simple order high resolution scheme lower than that of a comparable method, but still leading to a nearly equivalent order of accuracy. Retaining the mass conservation property, the hybrid algorithm couples the proposed VOF method with a level-set distancing algorithm in an implicit manner when the normal and the curvature of the interface need to be accurate for consideration of surface tension. For practical purposes, it is developed to be efficiently and easily extensible to three-dimensional applications with a minor implementation complexity. The accuracy and convergence properties of the method are verified through a wide range of tests: advection of rigid interfaces of different shapes, a three-dimensional air bubble's rising in viscous liquids, a two-dimensional dam-break, and a three-dimensional dam-break over an obstacle mounted on the bottom of a tank. The standard advection tests show that the volume advection algorithm is comparable in accuracy with geometric interface reconstruction algorithms of higher accuracy than other interface capturing-based methods found in the literature. The numerical results for the remainder of tests show a good agreement with other numerical solutions or available experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we follow the pore-level simulation approach to investigate fluid flow over an open-porous interface using the lattice Boltzmann method. As this approach does not require any specific treatment for the interface, the predicted pore-level velocity field is averaged and used to evaluate the available macroscopic boundary conditions for the interface. Two most common interface boundary conditions are evaluated, and the unknown fitting parameters in them are calculated as a function of porosity of the porous region. Analytical solutions of the velocity profile in the close vicinity of the interface are used to validate the numerical methodology. It is shown that the predicted numerical results for penetration depth in the porous region, flow rate in open channel, and velocity profile in the open and porous regions are in excellent agreement with the predictions of the two available models, if the proposed values of their fitting parameters are used.  相似文献   

8.
This paper deals with numerical simulations of some capillary-driven flows. The focus is on the wetting phenomenon in sintering-like flows and in the imbibition of liquids into a porous medium. The wetting phenomenon is modeled using the coupled Cahn–Hilliard/Navier–Stokes system. The Cahn–Hilliard equation is treated as a system where the chemical potential is solved first followed by the composition. The equations are discretised in space using piecewise linear functions. Adaptive finite element method is implemented with an ad hoc error criterion that ensures mesh resolution along the vicinity of the interface. In the 3D case we use parallel adaptive finite element method. First, a basic wetting of a liquid drop on a solid surface is shown and is established the independence of the dynamic contact angle on the interface width. In addition, the dependence of the dynamic contact angle on the Capillary number is matched with experimental data. Next, some generic sintering-like flows with a fixed matrix is presented. Different geometries in 2D and 3D are considered. We observed rapid wetting, precursor films, coalescence, breakup of melt drops as well as pore migration and elimination that are all microstructural characteristics of a liquid phase sintering. Finally, the effect of equilibrium contact angles on imbibition of liquid into a porous medium is studied.  相似文献   

9.
The effect of viscoelasticity on the deformation of a circular drop suspended in a second liquid in shear is investigated with direct numerical simulations. A numerical algorithm based on the volume-of-fluid method for interface tracking is implemented in two dimensions with the Oldroyd-B constitutive model for viscoelastic liquids. The code is verified against a normal mode analysis for the stability of two-layer flow in a channel; theoretical growth rates are reproduced for the interface height, velocity and stress components. Drop simulations are performed for drop and matrix liquids of different viscosities and elasticities. A new feature is found for the case of equal viscosity, when the matrix liquid is highly elastic and surface tension is low; hook-like structures form at the drop tips. This is due to the growth of first normal stress differences that occur slightly above the front tip and below the back tip as the matrix elasticity increases above a threshold value.  相似文献   

10.
Low Tension Polymer Flooding or Polymer Assisted Dilute Surfactant Flooding is generally deployed as a method to produce additional oil trapped in oil reservoirs after waterflooding. Fundamental study of microscopic mechanisms and pore-level phenomena in Polymer Assisted Dilute Surfactant Flooding needs more investigation. Of particular concern and interest is to probe into and document the effect of pore morphology and structure on microscopic phenomena occurring at pore level. No previous works on the effect of pore morphology in Polymer Assisted Dilute Surfactant Flooding has been reported in the literature. In this study, one-quarter five-spot glass micromodels were deployed to examine the effect of porous media morphology and structure on microscopic mechanisms as well as macroscopic behavior of Polymer Assisted Dilute Surfactant Flooding. Four types of pore morphologies were employed to study this factor. Results show that the pore geometric properties in a porous medium will dictate the degree of displacement front instability, capillary imbalance, viscous fingering, wetting characteristics and its distribution, and finally magnitude of ultimate oil recovery. We also found that the formation of flow scheme is dramatically influenced by the pre-designed injection scheme.  相似文献   

11.
The infiltration of a wetting droplet into the porous medium is a two-step process referred to as primary and secondary infiltration. In the primary infiltration there is a free liquid present at the porous medium surface, and when no fluid is left on the surface, the secondary infiltration is initiated. In both situations the driving force is the capillary pressure that is influenced by the local medium heterogeneities. A capillary network model based on the micro-force balance is developed with the same formulation applied to both infiltrations. The only difference between the two is that the net liquid flow into the porous medium in the secondary infiltration is equal to zero. The primary infiltration starts as a single-phase (fully saturated) flow and may proceed as a multiphase flow. The multiphase flow emerges as the interface (flow front) becomes irregular in shape. The immobile clusters of the originally present phase can be locally formed due to entrapment. Throughout the infiltration, it was found that portions of the liquid phase can be detached from the main body of the liquid phase forming some isolated liquid ganglia that increase in number and decrease in size. The termination of the secondary infiltration occurs once the ganglia become immobile due to their reduction in size. From the transient solution, the changes in the liquid saturation and capillary pressure during the droplet infiltration are determined. The solution developed in this study is used to investigate the droplet infiltration dynamics. However, the solution can be used to study the flow in fuel cell, nano-arrays, composites, and printing.  相似文献   

12.
13.
This paper describes the development of a semi‐Lagrangian computational method for simulating complex 3D two phase flows. The Navier–Stokes equations are solved separately in both fluids using a robust pseudo‐compressibility method able to deal with high density ratio. The interface tracking is achieved by the segment Lagrangian volume of fluid (SL‐VOF) method. The 2D SL‐VOF method using the concepts of VOF, piecewise linear interface calculation (PLIC) and Lagrangian advection of the interface is herein extended to 3D flows. Three different test cases of SL‐VOF 3D are presented for validation and comparison either with 2D flows or with other numerical methods. A good agreement is observed in each case. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a combined experimental and numerical study of the flow characteristics of round vertical liquid jets plunging into a cylindrical liquid bath. The main objective of the experimental work consists in determining the plunging jet flow patterns, entrained air bubble sizes and the influence of the jet velocity and variations of jet falling lengths on the jet penetration depth. The instability of the jet influenced by the jet velocity and falling length is also probed. On the numerical side, two different approaches were used, namely the mixture model approach and interface-tracking approach using the level-set technique with the standard two-equation turbulence model. The numerical results are contrasted with the experimental data. Good agreements were found between experiments and the two modelling approaches on the jet penetration depth and entraining flow characteristics, with interface tracking rendering better predictions. However, visible differences are observed as to the jet instability, free surface deformation and subsequent air bubble entrainment, where interface tracking is seen to be more accurate. The CFD results support the notion that the jet with the higher flow rate thus more susceptible to surface instabilities, entrains more bubbles, reflecting in turn a smaller penetration depth as a result of momentum diffusion due to bubble concentration and generated fluctuations. The liquid average velocity field and air concentration under tank water surface were compared to existing semi-analytical correlations. Noticeable differences were revealed as to the maximum velocity at the jet centreline and associated bubble concentration. The mixture model predicts a higher velocity than the level-set and the theory at the early stage of jet penetration, due to a higher concentration of air that cannot rise to the surface and remain trapped around the jet head. The location of the maximum air content and the peak value of air holdup are also predicted differently.  相似文献   

15.
Liquid penetration into thin porous media such as paper is often simulated using continuum-scale single-phase Darcy’s law. The underlying assumption was that a sharp invasion front percolates through the layer. To explore this ambiguous assumption and to understand the controlling pore-scale mechanisms, we have developed a dynamic pore-network model to simulate imbibition of a wetting phase from a droplet into a paper coating layer. The realistic pore structures are obtained using the FIB-SEM imaging of the coating material with a minimum resolution of 3.5 nm. Pore network was extracted from FIB-SEM images using Avizo software. Data of extracted pore network are used for statistically generating pore network. Droplet sizes are chosen in the range of those applicable in inkjet printing. Our simulations show no sharp invasion front exists and there is the presence of residual non-wetting phase. In addition, penetration of different sizes of droplets of different material properties into the pore network with different pore body and pore throat sizes are performed. We have found an approximately linear decrease in droplet volume with time. This contradicts the expected \(\sqrt{t}\)-behavior in vertical imbibition that is obtained using macroscopic single-phase Darcy’s law. With increase in flow rate, transition of imbibition invasion front from percolation-like pattern to a more sharper one with less trapping of non-wetting phase is also reported. Our simulations suggest that the single-phase Darcy’s law does not adequately describe liquid penetration into materials such as paper coating layer. Instead Richards equation would be a better choice.  相似文献   

16.
Liquid ligaments can grow from perturbations in liquid film spread on a spinning wheel due to the centrifugal force acting on the film. Typically, the growth is strongly influenced by the surface tension on the evolving liquid–air interface. This phenomenon, frequently exploited in industry for the production of fibers, was investigated numerically and the Volume-of-Fluid (VOF) methodology was used to model the interface. The freely available Gerris code with adaptive mesh refinement (AMR) was used to achieve the fine resolution of the computational grid required at the evolving liquid–air interface. The results were compared with the experimental data captured by a high-speed camera. The influence of the process operating variables on the ligament growth is also presented.  相似文献   

17.
18.
Considering the separable phenomena of imbibition in complex fine porous media as a function of timescale, it is noted that there are two discrete imbibition rate regimes when expressed in the Lucas–Washburn (L–W) equation. Commonly, to account for this deviation from the single equivalent hydraulic capillary, experimentalists propose an effective contact angle change. In this work, we consider rather the general term of the Wilhelmy wetting force regarding the wetting line length, and apply a proposed increase in the liquid–solid contact line and wetting force provided by the introduction of surface meso/nanoscale structure to the pore wall roughness. An experimental surface pore wall feature size regarding the rugosity area is determined by means of capillary condensation during nitrogen gas sorption in a ground calcium carbonate tablet compact. On this nano size scale, a fractal structure of pore wall is proposed to characterize for the internal rugosity of the porous medium. Comparative models based on the Lucas–Washburn and Bosanquet inertial absorption equations, respectively, for the short timescale imbibition are constructed by applying the extended wetting line length and wetting force to the equivalent hydraulic capillary observed at the long timescale imbibition. The results comparing the models adopting the fractal structure with experimental imbibition rate suggest that the L–W equation at the short timescale cannot match experiment, but that the inertial plug flow in the Bosanquet equation matches the experimental results very well. If the fractal structure can be supported in nature, then this stresses the role of the inertial term in the initial stage of imbibition. Relaxation to a smooth-walled capillary then takes place over the longer timescale as the surface rugosity wetting is overwhelmed by the pore condensation and film flow of the liquid ahead of the bulk wetting front, and thus to a smooth walled capillary undergoing permeation viscosity-controlled flow.  相似文献   

19.
In this article, the electrohydrodynamic (EHD) effects on nucleate boiling are studied by developing a numerical modelling of EHD effect on bubble deformation in pseudo-nucleate boiling conditions. The volume of fluid (VOF) method is employed to track the interface between the gas–liquid two phases; the user-defined code is written and added to the commercial software FLUENT to solve the electric field and the corresponding electric body force. On this basis, the model is applied to study the EHD effects on heat transfer and fluid flows. An initial air bubble surrounded by liquid CCl4 and attached to a horizontal superheated wall under the action of electric field is studied. The results of the EHD effect on bubble shape evolution are compared with those of available experiments showing good agreement. The mechanism of EHD enhancement of heat transfer and the EHD induced phenomena including bubble elongation and detachment are analyzed in detail.  相似文献   

20.
毛管上升现象与许多行业密切相关,系统地对此现象进行研究具有重大意义。与传统理论研究方法不同,本文使用N-S方程耦合水平集方法模拟毛管气液上升行为。通过与简化条件的解析解对比,验证了模拟方法的可靠性。此外,详细地研究了毛管振荡现象,并分析了影响毛管振荡行为的主要因素。结果表明,水平集方法能够精确地表征毛管振荡现象,与数值解相比具有更高的精度。毛管长度的增加能够减弱液柱振荡,主要归结于非湿相气体的粘滞力作用;湿相密度和湿相粘度同样对毛管振荡现象影响显著。湿相密度越大,惯性力越大,促进了毛管振荡;而湿相粘度变大,会增大粘滞力作用,因此减弱了毛管振荡现象。毛管振荡是由多种影响因素共同控制的,流体的惯性力是造成毛管振荡的主要原因,而粘滞力是减弱毛管振荡行为的主要因素,使液柱振荡逐渐衰减,并稳定至平衡高度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号