首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to obtain the knowledge necessary for developing new effective fire extinguishing technologies, we determined experimentally the gas temperature in the trace of water droplets streamlined by hot air flow. It was important to establish how much the temperature in the droplet trace decreases and how fast it recovery to the initial temperature field after the droplet evaporation. The following parameters were varied: droplet size from 1.3 mm to 1.7 mm, velocity from 1 m/s to 5 m/s, initial airflow temperature from 473 K to 773 K, number of droplets (one or two), and the arrangement of droplets relative to the hot inflow (serial or parallel). The study proves the theoretical hypothesis about a significant influence of evaporation on the temperature in the water droplet trace. When a temperature trace of water droplets is formed, irrespective of their arrangement, the role of the evaporation process strengthens with the gas flow temperature rising. Furthermore, the study specifies typical longitudinal dimensions of the aerodynamic and temperature traces of water droplets. It has been established that when droplets are located in series and in parallel, their combined impact on the temperature and velocity of the gas flow in the medium differs rather considerably.  相似文献   

2.
A surface with surface energy gradient was fabricated by using chemical vapor deposition technology with dodecyltrichlorosilane (C12H25Cl3Si), and its property was characterized by sessile drop method and Atomic Force Microscope scanning. Visualization experiments were carried out to investigate the motion behaviors of water and ethylene glycol droplets on horizontal and inclined gradient surfaces. And system free energy transition was analyzed to understand the mechanics of the droplet self-motion. The results show that the height and density of the silane molecules groups determined surface energy distribution on the surface. The liquid droplets were self-propelled to move horizontally or uphill from hydrophobic zone to hydrophilic zone on horizontal and inclined gradient surface. The motion process of the droplet experienced an accelerating stage and a creeping decelerating stage; the velocity and the displacement as well as the creeping frequency were proportional to the droplet size. The velocity of 2 ml water droplet reached 42 mm/s on the horizontal surface and 18 mm/s on the inclined surface, while that for ethylene glycol droplet reached 7 mm/s on the horizontal surface. The droplet motion was resulted from the energy transition among interfacial energy, kinetic energy, gravitational potential energy, and viscous dissipation energy. The interfacial energy released from deformation of the droplet is the main source for the motion.  相似文献   

3.
Coalescence of sessile droplets is studied experimentally with water–glycerin mixtures of different viscosities. Effects of viscosity on the dimensionless spreading length (Ψ) and the center-to-center distance (L) are investigated for two droplets; the first droplet (Ds) is stationary on a substrate and the second droplet (D0) landing at a center-to-center distance L from the first droplet. For a low viscosity fluid, Ψ is maximum when L approaches zero (or λ  1, where λ = 1  L/Ds), which represents a head-on collision. For a high viscosity fluid, Ψ is minimum when λ  0.6. The effect of λ on line printing for various viscosities is also examined by printing multiple droplets. We found that the larger the viscosity, the less the breakup between droplets; viscosities smaller than 60 wt% glycerin yielded line breakup. The overlap ratio of λ > 0.3 produced not a line, but a bigger droplet or puddle because of coalescence. Data obtained in this work can provide insights for the fabrication of conductive microtracks or microinterconnects in printed-electronics applications where a line breakup between droplets would lead to an electrical circuit short.  相似文献   

4.
The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20–90, 20–70, 20–50 and 20–30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm3/s) and gas phase changed from 0.28 to 1.4 (dm3/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 μm. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air–water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity.  相似文献   

5.
Fish oil microcapsules were prepared using two natural polysaccharides, alginate and chitosan, as the wall materials. A response surface methodology (RSM) was used to optimize the conditions for fish oil encapsulation efficiency (FOEE). The FOEE was investigated with respect to three key-variables in the RSM: ratio of inner oil phase to aqueous phase (X1, w/w); concentration of the aqueous phase (X2, wt%); and ratio of the aqueous phase to outer oil phase (X3, v/v). The optimal formulation obtained from the RSM model, i.e., 2.7:1 (X1), 1.6 wt% (X2), and 11.5:1 (X3), gave a FOEE of 28%. The model was validated and the fish oil microcapsules prepared under the optimized conditions were characterized in terms of particle size, polydispersity index (PDI), zeta potential, surface morphology, and in vitro release. The average droplet size, PDI, and zeta potential were 915 nm, 0.038, and +5.2 mV, respectively. The fish oil microcapsules were highly uniform microspheres, and had an accumulative release rate of 77.7% in 270 min in a gastrointestinal model, indicating their potential as an alternative carrier for the controlled release of fish oil. In conclusion, formulating optimal microencapsulation conditions by the RSM can be applied to the microencapsulation of various oil-soluble nutrients for food applications.  相似文献   

6.
Cong Xu  Binbin Liu 《Particuology》2012,10(3):283-291
Static-type samplers are required for sampling corrosive, toxic, high-temperature, or radioactive liquid–solid fluids. We have designed a compact reverse flow diverter pumping system for transferring liquid–solid mixtures. In accordance with the Venturi principle, an acceptable volume of liquid–solid fluid is automatically collected into a sampling bottle. The effects of sampling needle sizes, sectional area of the T-section, solid concentration, and liquid viscosity on the performance of fluidic samplers were experimentally investigated. The sample volume increased upon the reduction of the sampling needle length and the increase of the sectional area of the T-section, but decreased with the increase of solid concentration and liquid viscosity. Unbiased samples of acceptable volume were produced by the proposed fluidic sampler, even at 10.21 mPa s liquid viscosity, 35 wt% solid concentration, and 6.74 m sampling height.  相似文献   

7.
Boiling/evaporation heat transfer in a microchannel with pin fin structure was performed with water as the working fluid. Simultaneous measurements of various parameters were performed. The chip wall temperatures were measured by a high spatial-time resolution IR image system, having a sensitivity of 0.02 °C. The flow pattern variations synchronously changed wall temperatures due to ultra-small Bi number. The wavelet decomposition method successfully identified the noise signal and decoupled various temperature oscillations with different amplitudes and frequencies. Three types of temperature oscillations were identified according to heat flux q and mass flux G. The first type of oscillation occurred at q/G < 0.62 kJ/kg. The approximation coefficient of wavelet decomposition decided the dominant cycle period which was ∼3 times of the fluid residence time in the microchannel, behaving the density wave oscillation characteristic. The detail coefficients of wavelet decomposition decided the dominant cycle period, which matched the flow pattern transition determined value well, representing the flow pattern transition induced oscillation. For the second type of oscillation, the wavelet decomposition decoupled the three oscillation mechanisms. The pressure drop oscillation caused the temperature oscillation amplitudes of 5–10 °C and cycle periods of 10–15 s. The density wave oscillation and flow pattern transition induced oscillation are embedded with both the pressure rise and decrease stages of the pressure drop oscillation. The third type of oscillation happened at q/G > 1.13 kJ/kg, having the density wave oscillation coupled with the varied liquid film evaporation induced oscillation. The liquid island, retention bubble induced nucleation sites and cone-shape two-phase developing region are unique features of microchannel boiling with pin fin structure. This study illustrated that pressure drop oscillation and density wave oscillation, usually happened in large size channels, also take place in microchannels. The flow pattern transition and varied liquid film evaporation induced oscillations are specific to microchannel boiling/evaporation flow.  相似文献   

8.
Multiphase flows involving liquid droplets in association with gas flow occur in many industrial and scientific applications. Recent work has demonstrated the feasibility of using optical techniques based on laser extinction to simultaneously measure vapor concentration and temperature and droplet size and loading. This work introduces the theoretical background for the optimal design of such laser extinction techniques, termed WMLE (wavelength-multiplexed laser extinction). This paper focuses on the development of WMLE and presents a systematic methodology to guide the selection of suitable wavelengths and optimize the performance of WMLE for specific applications. WMLE utilizing wavelengths from 0.5 to 10 μm is illustrated for droplet size and vapor concentration measurements in an example of water spray, and is found to enable unique and sensitive Sauter mean diameter measurement in the range of ~1–15 μm along with accurate vapor detection. A vapor detection strategy based on differential absorption is developed to extend accurate measurement to a significantly wider range of droplet loading and vapor concentration as compared to strategies based on direct fixed-wavelength absorption. Expected performance of the sensor is modeled for an evaporating spray. This work is expected to lay the groundwork for implementing optical sensors based on WMLE in a variety of research and industrial applications involving multi-phase flows.  相似文献   

9.
This paper reports on an experimental investigation of the thermal properties behavior of 0.5 wt% silver nanoparticle-based nanofluids (NF) containing oleic acid (OA) and potassium oleate surfactant (OAK+) with concentrations of 0.5, 1, and 1.5 wt% respectively. The experiments were conducted from 20 °C to 80 °C. It was shown that the NF with 1 wt% OAK+ yielded the highest thermal behavior enhancement of about 28% at 80 °C compared to deionized water. The thermal performance had higher than the base fluid/nanofluids at approximately 80%. Moreover, the NF containing OAK+ showed higher thermal conductivity and dynamics of specific heat capacity than deionized water in all of the experimental conditions in this study. The rheological experiment showed that viscosity of NF was significantly dependant on temperature. As shear rate increased, the shear stress of the NF increased; however, the viscosity of the nanofluids decreased first and then stabilized. It was further found that NF containing OAK+ at a range of operating temperatures produced Newtonian behavior.  相似文献   

10.
A water-air impinging jets atomizer is investigated in this study, which consists of flow visualization using high speed photography and mean droplet size and velocity distribution measurements of the spray using Phase Doppler Anemometry (PDA). Topological structures and break up details of the generated spray in the far and near fields are presented with and without air jet and for an impinging angle of 90°. Spray angle increases with the water jet velocity, air flow rate and impinging angle. PDA results indicate that droplet size is smallest in the spray center, with minimum value of Sauter mean diameter (SMD) of 50 µm at the air flow rate of Qm = 13.50 g/min. SMD of droplets increases towards the spray outer region gradually to about 120 µm. The mean droplet velocity component W along the air-jet axis is highest in the spray center and decreases gradually with increasing distance from the spray center. SMD normalized by the air nozzle diameter is found firstly to decrease with gas-to-liquid mass ratio (GLR) and air-to-liquid momentum ratio (ALMR) and then remain almost constant. Its increasing with aerodynamic Weber number indicates an exponential variation. The study sheds light on the performance of water-air impinging jets atomizers providing useful information for future CFD simulation works.  相似文献   

11.
Liquid atomization is useful in many applications, such as engineering, science, pharmaceutics, medicine, forensics and others. In the present research, an innovative methodology and a new device for atomization of liquids into mists of micron and submicron droplets have been developed. The new liquid-atomization method exploits the physical phenomenon of fragmentation of thin liquid films into fine micron and submicron droplets by gas jets. For several tested prototypes, the direct observations using a high-speed visualization technique have demonstrated that bubbles were generated within a liquid and their shells have been subsequently destroyed by applying a mechanical impulse (pressure of a compressed air) once the bubbles came over the liquid surface. The main characteristics of the generated tap water mists have been experimentally measured by means of the laser diffraction technique under various conditions for each prototype. One of the prototype devices allowed obtaining mists containing 90–99% of droplets smaller than 1 µm, with the minimum arithmetic and Sauter mean droplet diameters of 1.48 µm and 2.66 µm, and the 2.64 ml/min of droplet flow rate for 3.5 bar manometer pressure of atomizing air. The gas to liquid mass ratios (GLR) in the new device are depending on the atomizing tube length and the number of perforated orifices in the tube: more the tube length, hence more the number of perforated orifices, and therefore more liquid droplets will form for the same gas flow rate. The measured GLR values related to 1 m length of the utilized atomizing tube were in the range of 0.65–1.06, and for the specifically utilized atomizing tube of 72 mm length were among 9.07–14.67. The results of this study demonstrate that the developed method of generation of very fine droplet mists has many advantages over the existing techniques and can be perspective for many practical applications.  相似文献   

12.
The local flow characteristics of oil–water dispersed flow in a vertical upward pipe were studied experimentally. The inner diameter and length of the test section are 40 mm and 3800 mm, respectively. A double-sensor conductivity probe was used to measure the local interfacial parameters, including interfacial area concentration, oil phase fraction, interfacial velocity, and oil drops Sauter mean diameter. The water flow rates varied from 0.12 m/s to 0.89 m/s, while the oil flow rates ranged from 0.024 m/s to 0.198 m/s. Typical radial profiles of interfacial area concentration, oil phase fraction, interfacial velocity, and oil drops Sauter mean diameter are presented. An interesting phenomenon is that the local and cross-section-averaged interfacial area concentrations display concave change with water flow rate under constant oil flow rate. The physical mechanism of such a variation is discussed in details.  相似文献   

13.
We present the transient phenomena occurring during the impulsive control of flow separation over a NACA0015 airfoil at an incidence angle of 11° and a chord Reynolds number of 1 million. Actuation is performed via pneumatic vortex generators, impulsively activated in order to analyze the transient phenomena corresponding to the attachment process and, conversely, to transient re-separation occurring when the actuators are switched off. Measurements are performed using a linear array of unsteady pressure transducers and a single traversing crosswire. The pressure transducers are positioned in the separated region of the airfoil, which extends ∼ 0.3c upstream of the trailing edge at the above flow condition. To control the flow, the angled fluidic vortex generators are positioned in a single spanwise array located 0.3c downstream of the leading edge of the airfoil. We establish a statistical relationship between pressure and velocity signals during both the uncontrolled steady state and the transient processes of attachment and separation. The unsteady behavior of the attachment process is also qualitatively analyzed via a 0.3 million Reynold number visualizations. The emission of a “starting vortex” is evidenced. This corresponds to a transient increase of drag.  相似文献   

14.
Atomization of liquids with high viscosity is always a challenge, especially when small diameter droplets and high liquid flow rates are simultaneously required. In the present research, the performance of a Venturi–vortex twin-fluid swirl nozzle is examined, attending to its capabilities to generate droplets with diameters below 20 µm when atomizing pure glycerin at room temperature. In this nozzle, air is injected tangentially in a central convergent section, and discharges suctioning the liquid fed to a coaxial chamber, here using a gear pump. The resulting spray is visualized and analyzed. Droplet size distributions are measured with a laser diffractometer. As expected, droplet diameter increases with liquid flow rate, and quickly diminishes when air flow rate is increased. Sauter mean diameters (SMD) below 15 µm can be obtained even when atomizing pure glycerin. However, these values are obtained for relatively low glycerin flow rates (∼5 l/h), and with rather wide distributions. For 10 l/h and an air-to-liquid mass flow rate ratio (ALR) of 13.7 more than 26% of the glycerin volume is atomized in droplets smaller than 20 µm. Liquid ligaments are observed near the nozzle exit, but they tend to break up while moving downstream.  相似文献   

15.
This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon. Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out.  相似文献   

16.
In this study, a HMW anionic co-polymer of 40:60 wt/wt NaAMPS/acrylamide was used as a drag reducing polymer (DRP) for oil–water flow in a horizontal 25.4 mm ID acrylic pipe. The effect of polymer concentration in the master solution and after injection in the main water stream, oil and water velocities, and pipe length on drag reduction (DR) was investigated. The injected polymer had a noticeable effect on flow patterns and their transitions. Stratified and dual continuous flows extended to higher superficial oil velocities while annular flow changed to dual continuous flow. The results showed that as low as 2 ppm polymer concentration was sufficient to create a significant drag reduction across the pipe. DR was found to increase with polymer concentration increased and reached maximum plateau value at around 10 ppm. The results showed that the drag reduction effect tends to increase as superficial water velocity increased and eventually reached a plateau at Usw of around 1.3 m/s. At Usw > 1.0 m/s, the drag reduction decreased as Uso increased while at lower water velocities, drag reduction is fluctuating with respect to Uso. A maximum DR of about 60% was achieved at Uso = 0.14 m/s while only 45% was obtained at Uso = 0.52 m/s. The effectiveness of the DRP was found to be independent of the polymer concentration in the master solution and to some extent pipe length. The friction factor correlation proposed by Al-Sarkhi et al. (2011) for horizontal flow of oil–water using DRPs was found to underpredict the present experimental pressure gradient data.  相似文献   

17.
It is known that bubble size affects seriously the average void fraction in bubbly flows where buoyant velocities vary considerably with bubble size. On the contrary, there is no systematic literature report about bubble size effects on the intensity and frequency of void fraction fluctuations around the average void fraction. This work aims to provide such information. An electrical impedance technique is employed along with non-intrusive ring electrodes to register void fraction fluctuations down to 10−5. Bubble size fluctuations are estimated from high resolution optical images. Experiments are conducted in co-current upward dispersed bubble flow inside a 21 mm tube with average bubble size between ∼50 and ∼700 μm. Water and blood simulant are used as test liquids with velocity from ∼3 to ∼30 cm s−1. The above resemble conditions of Decompression Sickness (DCS) in the bloodstream of human vena cava. It is found that the intensity and frequency of void fraction fluctuations vary appreciably with bubble size at constant gas and liquid flow rates. Moreover, these variations are not random but scale with bubble size. As a first step to quantify this effect, an empirical expression is derived that relates average bubble size to the ratio standard deviation/average value of void fraction.  相似文献   

18.
Pressure drops in the flow through micro-orifices and capillaries were measured for silicone oils, aqueous solutions of polyethylene glycol (PEG), and surfactant aqueous solutions. The diameter of micro-orifices ranged from 5 μm to 400 μm. The corresponding length/diameter ratio was from 4 to 0.05 and capillary diameters were 105 μm and 450 μm. The following results were obtained: silicone oils of 10?6 m2/s and 10?5 m2/s in kinematic viscosity generated a reduction of pressure drop (RPD), that is, drag reduction, similar to the RPD of water and a glycerol/water mixture reported in the previous paper by the present authors. When RPD occurred, the pressure drop (PD) of silicone oils of 10?6 m2/s and 10?5 m2/s had nearly the same magnitude. Namely, the difference in viscosity did not influence RPD. A 103 ppm aqueous solution of PEG20000 provided almost the same PD as that of PEG8000 for the 400 μm to 15 μm orifices, but a greater PD than that of PEG8000 for the 10 μm to 5 μm orifices. A non-ionic surfactant and a cationic surfactant were highly effective in RPD compared with anionic surfactants: the non-ionic and cationic surfactant solutions had PD one order of magnitude lower than that of water under some flow conditions in the concentration range from 1 ppm to 104 ppm, but the anionic surfactant solutions did not generate RPD except in the case of the smallest orifice of 5 μm in diameter. The PD of the non-ionic surfactant solution showed a steep rise at a Reynolds number (Ret) for 400 μm to 15 μm orifices. The Ret provides the relationship Ret = K/D, where D is the orifice diameter, and K is a constant of 2 × 10?2 m for the 100–20 μm orifices irrespective of liquid concentration. Capillary flow experiment revealed that the PEG, non-ionic and cationic surfactant solutions generated RPD also in a laminar flow through the capillary of 105 μm in diameter, but not in the flow through the capillary of 450 μm in diameter. In order to clarify the cause of RPD, an additional experiment was carried out by changing the orifice material from metal to acrylic resin. The result gave a different appearance of RPD, suggesting that RPD is related to an interfacial phenomenon between the liquid and wall. The large RPDs found in the present experiment are very interesting from both academic and practical viewpoints.  相似文献   

19.
Oil–water two-phase flow experiments were conducted in horizontal ducts made of Plexiglas® to determine the in situ oil fraction (holdup) by means of the closing valves technique, using mineral oil (viscosity: 0.838 Pa s at 20 °C; density: 890 kg m−3) and tap water. The ducts present sudden contractions from 50 mm to 40 mm i.d. and from 50 mm to 30 mm i.d., with contraction ratios of 0.64 and 0.36, respectively. About 200–320 tests were performed by varying the flow rates of the phases. Flow patterns were investigated for both the up- and downstream pipe in order to assess whether relevant variations of the flow patterns across the sudden contraction take place. Data were then compared with predictions of a specific correlation for oil–water flow and some correlations for gas–water flow. A drift-flux model was also applied to determine the distribution parameter.  相似文献   

20.
High-velocity free-surface flows are complex two-phase flows and limited information is available about the interactions between air and water for void fractions of about 50%. Herein a detailed experimental study was conducted in the intermediate flow region (C ∼ 50%) on a stepped spillway and the microscopic air–water flow characteristics were investigated. The results showed differences in water and droplet chord times with comparatively larger number of air chord times (0–2 ms), and larger number of water chord times (2–6 ms). A monotonic decrease of particle chord modes was observed with increasing bubble count rates. Several characteristic time scales were identified based upon inter-particle arrival time analyses of characteristic chord time classes as well as spectral analyses of the instantaneous void fraction signal. Chord times of 3–5 ms appeared to be characteristic time scales of the intermediate flow region having similar time scales compared to the local correlation and integral turbulent time scales and to time scales associated with bubble break-up and turbulent velocity fluctuations. A further characteristic time scale of 100 ms was identified in a frequency analysis of instantaneous void fraction. This time scale was of the same order of magnitude as free-surface auto-correlation time scales suggesting that the air–water flow structure was affected by the free-surface fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号