首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Surfactants stabilise oil droplets in water, forming a dispersed oil–water emulsion. Treatment of oily effluents is a serious challenge owing to the high stability and colloidal nature of the oil droplets. In many applications, microbubbles are employed for separation purposes due to their buoyancy and increased surface area to volume ratio. This property has been exploited in the water treatment industry for separation in a process known as dissolved air flotation (DAF). Though practically efficient, the process is energy intensive operating at >5 bars and consequently consuming ∼90% of the total energy required in water purification plants. In this study microbubbles were produced by fluidic oscillation via a no-moving part diverter valve to cut down the energy consumption considerably. Microbubbles are applied for the separation of emulsified oil in a process known as microflotation. The mean bubble size generated by fluidic oscillation from the 50 μm pore diffuser was ∼100 μm, otherwise coarse bubbles were produced under steady flow. The effect of surfactant concentration on oil droplet size was investigated. It was found that oil droplet size varied inversely proportional to surfactant concentration. In addition, it was found that the oil removal efficiency also depends on the surfactant concentration. The maximum oil removal efficiency by Microflotation was found to be 91% under lowest surfactant concentration tested (0.3 wt%) whilst at highest surfactant concentration used (10 wt%); lowest recovery efficiency (19.4%) was recorded.  相似文献   

2.
A diagnostic technique capable of characterizing interfaces between transparent, immiscible fluids is developed and demonstrated by investigating the morphology of liquid–gas interfaces in an adiabatic two-phase flow through a microchannel of 500 μm × 500 μm square cross section. Water seeded with 0.5 μm-diameter fluorescent polystyrene particles is pumped through the channel, and the desired adiabatic two-phase flow regime is achieved through controlled air injection. The diagnostic technique relies on obtaining particle position data through epifluorescent imaging of the flow at excitation and emission wavelengths of 532 nm and 620 nm, respectively. The particle position data are then used to resolve interface locations to within ±1 μm in the focal plane. By mapping the interface within individual focal planes at various depths within the channel, it is possible to determine the complete liquid–gas interface geometry across the channel cross section in a dynamic flow environment. Utilizing this approach, the liquid–gas phase boundaries of annular flows within a microchannel have been successfully characterized.  相似文献   

3.
A water-air impinging jets atomizer is investigated in this study, which consists of flow visualization using high speed photography and mean droplet size and velocity distribution measurements of the spray using Phase Doppler Anemometry (PDA). Topological structures and break up details of the generated spray in the far and near fields are presented with and without air jet and for an impinging angle of 90°. Spray angle increases with the water jet velocity, air flow rate and impinging angle. PDA results indicate that droplet size is smallest in the spray center, with minimum value of Sauter mean diameter (SMD) of 50 µm at the air flow rate of Qm = 13.50 g/min. SMD of droplets increases towards the spray outer region gradually to about 120 µm. The mean droplet velocity component W along the air-jet axis is highest in the spray center and decreases gradually with increasing distance from the spray center. SMD normalized by the air nozzle diameter is found firstly to decrease with gas-to-liquid mass ratio (GLR) and air-to-liquid momentum ratio (ALMR) and then remain almost constant. Its increasing with aerodynamic Weber number indicates an exponential variation. The study sheds light on the performance of water-air impinging jets atomizers providing useful information for future CFD simulation works.  相似文献   

4.
The vaporization characteristics of a liquid hexanes jet in a lab-scale test section with a plain orifice-type injector were experimentally investigated. The experimental measurements were carried out on the basis of the infrared laser extinction method using two He–Ne lasers (one at 632.8 nm and the other at 3.39 μm). The momentum flux ratio (qF/A) was varied from 20 to 60 over 20 steps, and the supplying air temperature (TA) was changed from 20 to 260 °C over 120 steps. The objectives of the current study were to assess the vaporization characteristics of a liquid hexanes jet and to derive a correlation between flow conditions and hexanes vapor concentration in a jet-in-crossflow configuration. From the results of the experimental measurement, it was concluded that hexanes vapor concentration increased with the increase of the momentum flux ratio and the supplying air temperature. An experimental correlation between flow conditions and hexanes vapor concentration (ZF) was proposed as a function of the normalized horizontal distance (x/do), the supplying air temperature (TA), the momentum flux ratio (qF/A), the fuel jet Reynolds number (ReF), and the fuel jet Weber number (WeF).  相似文献   

5.
Particle coatings are used extensively to generate dispersed solids with well-defined properties, e.g., to protect active ingredients, with most coating processes using core particles of a diameter larger than 200 μm. This work contributes to the development of a coating process for fine dispersed particles (diameter less than 50 μm) by combining two particle-formulation processes, namely, coating and spray drying. The feasibility of the operation is based on and demonstrated by the innovative application of a two-fluid nozzle. Experiments were conducted by using glass particles as core particles and sodium benzoate as the coating agent. The coating of finely dispersed particles is achieved by the spraying of particles and coating solution as a homogeneous suspension. The aim is to create droplets with only one contained particle at the nozzle outlet. After evaporation of the water in the droplet, a thin solid film is built on the particle surface. The suspension viscosity was measured and compared with empirical equations from the literature. The liquid-film thickness on the particle surface was calculated to predict the building of a uniform coating layer or agglomerates. In this study, the feasibility of pneumatic transport through the nozzle and an investigation of the process were illustrated. The agglomeration fraction and degree of coating of the particle surface were analyzed optically by scanning electron microscopy. In this way, the influence of different processes and suspension parameters on the product quality were determined.  相似文献   

6.
Centrifugal spray injected at various angles in gas crossflow has been studied experimentally using PIV visualization system and image-processing techniques. Experiments were carried out inside a rectangular duct (95 mm × 95 mm in cross-section) at ambient temperature and pressure, with different gas Reynolds numbers (vary from 12,900 to 45,000) and three injection angles (60°, 90° and 120°). The spray angle of the centrifugal nozzle is 80°, with D32 of 80 μm. The instantaneous images of droplets distribution and the values of the line-averaged D32 at different positions on the cross-sections along the flow field for each condition were obtained, and their flow field configurations were achieved. Quantitative assessments of mixing degree between two phases for different injection angles were determined using a spatial unmixedness parameter. It is found that the addition of droplets into the gas crossflow enhanced the turbulence intensity of the gas crossflow and caused different-scale vortices. The flow field structure, to a great extent, is dependent on the injection angle. The entrainment and centrifugal force of large vortex lead to uneven droplet distribution and moreover influence the mixing of droplets and gas crossflow. A better mixing result can be obtained with the injection angle of nozzles of 60°.  相似文献   

7.
A surface with surface energy gradient was fabricated by using chemical vapor deposition technology with dodecyltrichlorosilane (C12H25Cl3Si), and its property was characterized by sessile drop method and Atomic Force Microscope scanning. Visualization experiments were carried out to investigate the motion behaviors of water and ethylene glycol droplets on horizontal and inclined gradient surfaces. And system free energy transition was analyzed to understand the mechanics of the droplet self-motion. The results show that the height and density of the silane molecules groups determined surface energy distribution on the surface. The liquid droplets were self-propelled to move horizontally or uphill from hydrophobic zone to hydrophilic zone on horizontal and inclined gradient surface. The motion process of the droplet experienced an accelerating stage and a creeping decelerating stage; the velocity and the displacement as well as the creeping frequency were proportional to the droplet size. The velocity of 2 ml water droplet reached 42 mm/s on the horizontal surface and 18 mm/s on the inclined surface, while that for ethylene glycol droplet reached 7 mm/s on the horizontal surface. The droplet motion was resulted from the energy transition among interfacial energy, kinetic energy, gravitational potential energy, and viscous dissipation energy. The interfacial energy released from deformation of the droplet is the main source for the motion.  相似文献   

8.
Liquid atomization is useful in many applications, such as engineering, science, pharmaceutics, medicine, forensics and others. In the present research, an innovative methodology and a new device for atomization of liquids into mists of micron and submicron droplets have been developed. The new liquid-atomization method exploits the physical phenomenon of fragmentation of thin liquid films into fine micron and submicron droplets by gas jets. For several tested prototypes, the direct observations using a high-speed visualization technique have demonstrated that bubbles were generated within a liquid and their shells have been subsequently destroyed by applying a mechanical impulse (pressure of a compressed air) once the bubbles came over the liquid surface. The main characteristics of the generated tap water mists have been experimentally measured by means of the laser diffraction technique under various conditions for each prototype. One of the prototype devices allowed obtaining mists containing 90–99% of droplets smaller than 1 µm, with the minimum arithmetic and Sauter mean droplet diameters of 1.48 µm and 2.66 µm, and the 2.64 ml/min of droplet flow rate for 3.5 bar manometer pressure of atomizing air. The gas to liquid mass ratios (GLR) in the new device are depending on the atomizing tube length and the number of perforated orifices in the tube: more the tube length, hence more the number of perforated orifices, and therefore more liquid droplets will form for the same gas flow rate. The measured GLR values related to 1 m length of the utilized atomizing tube were in the range of 0.65–1.06, and for the specifically utilized atomizing tube of 72 mm length were among 9.07–14.67. The results of this study demonstrate that the developed method of generation of very fine droplet mists has many advantages over the existing techniques and can be perspective for many practical applications.  相似文献   

9.
The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20–90, 20–70, 20–50 and 20–30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm3/s) and gas phase changed from 0.28 to 1.4 (dm3/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 μm. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air–water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity.  相似文献   

10.
Coalescence of sessile droplets is studied experimentally with water–glycerin mixtures of different viscosities. Effects of viscosity on the dimensionless spreading length (Ψ) and the center-to-center distance (L) are investigated for two droplets; the first droplet (Ds) is stationary on a substrate and the second droplet (D0) landing at a center-to-center distance L from the first droplet. For a low viscosity fluid, Ψ is maximum when L approaches zero (or λ  1, where λ = 1  L/Ds), which represents a head-on collision. For a high viscosity fluid, Ψ is minimum when λ  0.6. The effect of λ on line printing for various viscosities is also examined by printing multiple droplets. We found that the larger the viscosity, the less the breakup between droplets; viscosities smaller than 60 wt% glycerin yielded line breakup. The overlap ratio of λ > 0.3 produced not a line, but a bigger droplet or puddle because of coalescence. Data obtained in this work can provide insights for the fabrication of conductive microtracks or microinterconnects in printed-electronics applications where a line breakup between droplets would lead to an electrical circuit short.  相似文献   

11.
A downward flow of glass bead particles in a vertical pipe is investigated using a two-component LDV/PDPA for a range of Re (6400 < Re < 24,000) and a constant particle loading (m = 0.7). Two particle sizes of 70 and 200 μm are considered in the present work. For the 70 μm particles, the presence of the particles dampens the gas-phase turbulence intensity at the lowest value of Re investigated (8300) compared with the single-phase flow at the same Re. As Re increases, the gas turbulence increases, and for Re > 13,800 the gas turbulence is enhanced compared with the single-phase flow at the same Re. For the 200 μm particles, the intensity also increases with Re and is enhanced for all values of Re investigated, except at the lowest value of Re investigated (6400). At this value, the gas turbulence is equal to that of single-phase flow at the same Re. The observed trend in the gas-phase turbulence modulation with Re is proposed to be due to the change in the segregation patterns and in the average volume fractions of the particles with increasing Re. More importantly, the present experimental results suggest that, consideration of either the gas and particle characteristic length scales or the particle Reynolds number solely is insufficient to predict gas-phase turbulence modulation in gas–particle flows.  相似文献   

12.
13.
Atomization of liquids with high viscosity is always a challenge, especially when small diameter droplets and high liquid flow rates are simultaneously required. In the present research, the performance of a Venturi–vortex twin-fluid swirl nozzle is examined, attending to its capabilities to generate droplets with diameters below 20 µm when atomizing pure glycerin at room temperature. In this nozzle, air is injected tangentially in a central convergent section, and discharges suctioning the liquid fed to a coaxial chamber, here using a gear pump. The resulting spray is visualized and analyzed. Droplet size distributions are measured with a laser diffractometer. As expected, droplet diameter increases with liquid flow rate, and quickly diminishes when air flow rate is increased. Sauter mean diameters (SMD) below 15 µm can be obtained even when atomizing pure glycerin. However, these values are obtained for relatively low glycerin flow rates (∼5 l/h), and with rather wide distributions. For 10 l/h and an air-to-liquid mass flow rate ratio (ALR) of 13.7 more than 26% of the glycerin volume is atomized in droplets smaller than 20 µm. Liquid ligaments are observed near the nozzle exit, but they tend to break up while moving downstream.  相似文献   

14.
The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent–divergent effervescent atomizer spraying water with air as atomizing medium in the “outside-in” gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent–divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering.  相似文献   

15.
Three-dimensional particle tracking velocimetry (3D-PTV) is applied to particle-laden pipe flows at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The effects of flow direction (upward or downward) and mean concentration (in the range 0.5 × 10−5–3.2 × 10−5) on the production of turbulence are assessed for inertial particles with a Stokes number equal to 2.3, based on the particle relaxation time and viscous scales. The turbulence production and the Kolmogorov constant, both measured for particle laden flows in upflow and downflow, allowed for the derivation of a break-up criterion as a function of the radial coordinate. This criterion predicts the maximum possible particle size before break-up may occur. It is shown that the maximum particle size is bigger at the pipe centerline than in the near-wall zone by more than a factor of 5. Flow direction affects the particle concentration profile, with wall peaking in downflow and core peaking in upflow. This affects both the residence time and the maximum particle size, the latter by 7%.  相似文献   

16.
Motion of monodispersed aerosol particles suspended in air flow has been studied on realistic transparent model of human airways using Phase Doppler Particle Analyser (P/DPA). Time-resolved velocity data for particles in size range 1–8 μm were processed using Fuzzy Slotting Technique to estimate the power spectral density (PSD) of velocity fluctuations. The optimum processing setup for our data was found and recommendations for future experiments to improve PSD quality were suggested. Typical PSD plots at mainstream positions of the trachea and the upper bronchi are documented and differences among (1) steady-flow regimes and equivalent cyclic breathing regimes, (2) inspiration and expiration breathing phase and (3) behaviour of particles of different sizes are described in several positions of the airway model. Systematically higher level of velocity fluctuations in the upper part of the frequency range (30–500 Hz) was found for cyclic flows in comparison with corresponding steady flows. Expiratory flows in both the steady and cyclic cases produce more high-frequency fluctuations compared to inspiratory flows. Negligible differences were found for flow of particles in the inspected size range 1–8 μm at frequencies below 500 Hz. This finding was explained by Stokes number analysis. Implied match of the air and particle flows thereby indicates turbulent diffusion as important deposition mechanism and confirms the capability to use the P/DPA data as the air flow velocity estimate.  相似文献   

17.
The estimation of the blockage boundary for pneumatic conveying through a slit is of significant importance. In this paper, we investigate the characteristics for blockage of powder (48 μm average diameter) through a horizontal slit (1.6 m × 0.05 m × 0.002 m). The results show that the required critical solid mass flow rate increases as the superficial air velocity increases superficial air velocity. The solid loading ratio and superficial air velocity displayed a decreasing power law relationship. This finding agrees with existing theory and experimental results. However, a minimum inlet solid loading ratio exists. When the air velocity is greater than the corresponding air velocity of the minimum solid loading ratio, the solid loading ratio exhibits an increasing trend in power law. We also found that when the inlet conveying pressure increased, the critical solid mass flow rate required for blockage, the inlet solid loading ratio, and the minimum inlet solid loading ratio increased.  相似文献   

18.
The Large Eddy Simulation model was introduced to study the micro spray characteristics under ultra-high injection pressure (>220 MPa). EFS8400 spray test platform was set up to verify the accuracy of the numerical model. The mechanisms of micro spray characteristics were studied intensively under different injection pressures (180 MPa, 240 MPa) and nozzle diameters (0.1 mm, 0.16 mm). The results indicated that the micro turbulence vortex structures can be captured, especially in the liquid spray core area. Large Eddy Simulation model combined with the small grid size of 0.25 mm show a huge advantage in studying the micro spray characteristics under ultra-high injection pressure; The turbulence vorticity and spray velocity for injection pressure of 240 MPa are more intensive than that of 180 MPa, and also the ultra-high injection pressure can contribute to strong turbulence disturbance between spray and surrounding air, which is helpful to improve the quality of spray; The spray velocity field extended wider for the diameter of 0.16 mm, and also the values of velocity in the spray center is higher than that of the diameter of 0.1 mm; The entrainment vortex appeared at the edge of the large velocity gradient between spray and surrounding air, and the higher velocity gradient for ultra-high injection pressure (240 MPa) between the spray and air is easier to increase the generation of entrainment vortex in the downstream of the spray, which can significantly increase the quality of spray and atomization.  相似文献   

19.
The experiments were conducted in 54.9 mm diameter horizontal pipe on two sizes of glass beads of which mean diameter and geometric standard deviation are 440 μm & 1.2 and 125 μm & 1.15, respectively, and a mixture of the two sizes in equal fraction by mass. Flow velocity was up to 5 m/s and overall concentration up to 50% by volume for each velocity. Pressure drop and concentration profiles were measured. The profiles were obtained traversing isokinetic sampling probes in the horizontal, 45° inclined and vertical planes including the pipe axis. Slurry samples of the mixture collected in the vertical plane were analyzed for concentration profiles of each particle batch constituting the mixture. It was found that the pressure drop is decreased for the mixture at high concentrations except 5 m/s and a distinct change of concentration profiles was observed for 440 μm particles indicating a sliding bed regime, while the profiles in the horizontal plane remains almost constant irrespective of flow velocity, overall concentration and slurry type.  相似文献   

20.
Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 June to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies. However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16.9 nm/h. The needed concentration of condensable vapor was 6.1 × 107 cm?3, and its source rate was 1.1 × 106 cm?3 s?1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号