首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
具有高锂离子迁移数和良好可加工性能的锂快离子导体对于全固态电池的发展非常重要。然而,现有的锂快离子导体主要限制于硬质陶瓷,目前尚无柔性聚合物类型的锂快离子导体被报道。在这个工作中,我们报告了一种通过三种不同有机单体的自由基聚合反应形成的三元无规共聚单离子快离子导体(SISC)。该SISC中包含丰富的锂离子传输位点和具有阴离子锚定功能的阴离子受体。此外,三种不同单体的共聚反应带来低结晶度和低玻璃化转变温度(Tg),有利于链段运动,从而获得小的锂离子传输的活化能(Ea)。电化学测试结果表明,该SISC的室温离子电导率和锂离子迁移数分别达到1.29 mS∙cm−1和0.94。将SISC与锂金属负极和多种正极(包括LiFePO4、LiCoO2和硫化聚丙烯腈(SPAN))原位聚合,组装得到的全固态电池具有良好的电化学稳定性。其中,Li||LiFePO4全固态电池表现出高达8C的倍率性能和良好的循环寿命(在0.5C倍率下稳定循环 > 700圈)。这项工作提供了一种新颖的聚合物基快离子导体设计理念,对于发展高性能全固态电池具有重要意义。  相似文献   

2.
The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery. However, the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hours with large energy consumption. Here, we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte. The dense electrolyte pellet with high relative density of ca. 97.4% and ionic conductivity of ca. 1.44×10-5 S/cm at 30℃ can be obtained by spark plasma sintering process within the extremely short time of only ca. 0.1 h. Also the solid electrolyte provides stable electrochemical window of ca. 6.0 V(vs. Li+/Li) and high electrochemical interface stability toward Li metal anode. With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte, the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca. 154 mA·h/g at 0.1 C and the reversible capacity of ca. 132 mA·h/g after 70 cycles with high Coulombic efficiency of 99.5% at 55℃. Therefore, this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.  相似文献   

3.
Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10−3 S cm−1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g−1) and long-term discharge/charge stability (247 cycles) for solid-state Li−O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.  相似文献   

4.
The solid lithium-ion electrolyte "Li(7)La(3)Zr(2)O(12)" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, (6)Li and (7)Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy E(a) characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10(-4) Scm(-1) to 4 × 10(-4) Scm(-1) depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10(-6) Scm(-1), E(a) = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number t(e-) is of the order of 10(-7). Thus, cubic LLZO is an almost exclusive lithium ion conductor at ambient temperature.  相似文献   

5.
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H+/Li+交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10Ω·cm2,对称电池能够在0.1mA·cm-2的电流密度下实现长达1000h的长循环稳定性。匹配正极LiFePO4(LFP)或LiNi0.5Co0.2Mn0.3O2(NCM523)的准固态电池在室温下能够稳定循环100次以上。  相似文献   

6.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

7.
石榴石型Li7La3Zr2O12(LLZO)离子导电性高,在全固态锂离子电池中具有潜在的应用价值。但目前报道的LLZO制备工艺烧结温度范围宽,稳定性差,不利于宏量制备。本文以烧结产物物相结构和结晶度为考察指标,系统研究了锂源及用量、烧结温度、烧结时间等因素对LLZO成相的影响。结果表明,当以分解温度较低的锂盐(LiNO3)为原料时,在800℃下得到四方相LLZO,900℃时呈立方相LLZO;当以分解温度较高的锂盐(Li2CO3)为原料时,900℃才能形成四方相LLZO。烧结时间的延长和温度升高均会导致锂的挥发损失,影响LLZO物相的形成。通过增加锂盐用量、改变烧结前驱体聚集特性与烧结时间可抑制锂的挥发。当以过量10%的Li2CO3为原料时,900℃烧结6h可稳定的得到立方相LLZO。该研究较为系统地分析了制备工艺对LLZO成相的影响,可为LLZO宏量稳定制备提供借鉴。  相似文献   

8.
通过N-丁基-N-甲基哌啶双(氟磺酰)亚胺盐离子液体和双(氟磺酰)亚胺锂盐修饰了Li|Li10GeP2S12界面,并研究了界面的改性效果.研究结果表明,在界面处原位生成一层致密的固体电解质界面膜(SEI),具有一定流变性的离子液体可渗透到Li10GeP2S12晶粒内部;在0.1 mA/cm2的电流密度下,界面改性后的Li|Li10GeP2S12|Li对称电池可稳定循环1500 h以上,极化电压仅为30 mV.在2.5~3.6 V电压范围内,Li|Li10GeP2S12|LiFePO4电池在0.2C倍率下充放电循环的首次放电比容量为148.1 mA·h/g,库仑效率为95.8%,经过30次循环后容量保持率为90.1%.  相似文献   

9.
固态锂电池具有安全性好、能量密度高等优点,在新能源汽车和智能电子等领域具有广泛的应用前景。然而,由化学/电化学和物理因素引起的界面副反应与高界面阻抗问题制约了其进一步发展。先前的综述已对解决化学/电化学界面问题的方法有了相对全面的阐述,但并未细致讨论不同结构固态电池中物理界面的影响及应对策略。本文将简要介绍化学/电化学界面问题及其解决方案;重点按结构特点将固态锂电池分为三明治结构、粉末复合结构和3D一体化结构,细致地分析不同电池结构的物理界面特点与优化策略,并对各种策略的优缺点进行比较分析;最后,对固态锂电池电极/电解质界面的未来研究方向进行展望。  相似文献   

10.
全固态电池因其高能量密度和高安全性而成为具有发展前景的下一代储能技术。开发具有高室温离子电导率、优异化学/电化学稳定性、良好正/负极兼容性的固态电解质是实现全固态电池实用化的关键。卤化物固态电解质因其优异的电化学窗口、高正极稳定性、可接受的室温锂离子电导率等优势,受到了广泛的关注。本文通过对近年来卤化物电解质的相关研究进行总结,综述了该类电解质的组成、结构、离子传导路径及制备方法,并分析了金属卤化物电解质的电导率、稳定性特点,归纳了近年来该电解质在全固态电池中具有代表性的应用,并基于以上总结和分析,指出了卤化物固态电解质的研究难点及发展方向。  相似文献   

11.
Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all–solid–state Li–ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+–doped, cation–disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium–deficient layer featuring a rock–salt–like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high–loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide–based ASSBs at high voltages.  相似文献   

12.
全固态电池因其较高的安全性和能量密度而成为下一代电动汽车和智能电网用储能器件的重点研究方向之一。开发具有高室温锂离子电导率、化学/电化学稳定性优异、对电极材料兼容性优异等特点的固态电解质材料是推动全固态电池发展的重要研究课题之一。硫化物电解质因其相对较高的室温电导率(~10−3 S∙cm−1)、较低的电解质/电极固-固界面阻抗等优点而在众多无机固体电解质材料中成为研究热点。本文基于作者多年研究成果和当前国内外发表的相关工作,从电解质的结构、离子传导、合成、综合性能改善及在全固态电池中的应用等方面系统总结了锂硫银锗矿固态电解质材料研究,并分析了该类电解质面临的问题和挑战,最后探讨了其未来可能的研究方向和发展趋势。  相似文献   

13.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

14.
将聚乙二醇单甲醚(MPEG)接枝在聚(异丁烯-alt-马来酸酐)(PIAMA)上合成梳状锂单离子导体PIAMA-g-MPEG, 并与双(三氟甲基磺酰)亚胺锂(LiTFSI)复合制成双锂盐梳状聚合物电解质薄膜. 用核磁共振波谱 (1H NMR)、 热重分析(TG)、 扫描电子显微镜(SEM)、 电化学阻抗(EIS)和电池充放电测试等方法对聚合物基体和电解质的物化性质和电化学性能进行了研究.结果表明, 设计的双锂盐梳状聚合物电解质能够有效解离并传输锂离子, 70 ℃下离子迁移数(tLi+)为0.32, 离子电导率(σ)为1.5×10-4 S/cm, 电化学稳定窗口为0~4.9 V (vs. Li/Li+). 组装Li|PIAMA-g-MPEG|Li电池并进行70 ℃恒电流充放电电压极化测试, 结果表明, 电解质与金属锂负极兼容性较好, 能够有效抑制锂枝晶的生长.组装LiFePO4|PIAMA-g-MPEG|Li电池进行70 ℃长循环及倍率性能测试, 电解质表现出了优异的高温性能.  相似文献   

15.
Significant safety problems and poor cyclic stability of conventional lithium-ion batteries, which based on organic liquid electrolytes, hinder their practical application, while all-solid-state batteries (ASSBs) are considered the most promising candidates to replace traditional lithium-ion batteries. As a critical component of ASSBs, solid-state electrolytes play an essential role in ion transport properties and stability. At present, the solid garnet electrolyte is considered as one of the most promising electrolytes because of its excellent performance. However, it still faces many challenges in ionic conductivity, air stability, electrode/electrolyte interface, and lithium dendrites. Therefore, this review is concerned about the up-to-date progress and challenges which will greatly influence the large-scale application of solid garnet electrolytes. Firstly, various ways to improve the ionic conductivity of solid garnet electrolytes are comprehensively summarized. Then, the stability of solid garnet electrolytes in the air is carefully discussed. Secondly, the latest progress in interface engineering between anode/cathode and solid garnet electrolytes treated by different methods is reported. The formation mechanism and influencing factors of lithium dendrites in the solid garnet electrolyte are systematically focused on. Finally, the development and innovation of composite solid garnet electrolytes and 3D garnet electrolytes are summarized in detail. Some important characterization techniques for studying the aforementioned problems are also summarized. Based on the current development of solid garnet electrolytes and solid-state batteries, further challenges and perspectives are presented.  相似文献   

16.
固态聚合物电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题。近年来,基于无机填料与聚合物电解质的高锂离子电导的有机-无机复合电解质备受关注。根据渗流理论,有机-无机界面被认为是复合电解质离子电导率改善的主要原因。因此,设计与优化有机-无机渗流界面对提高复合电解质离子电导率具有重要意义。本文从渗流结构的设计出发,综述了不同维度结构的无机填料用于高锂离子电导的有机-无机复合电解质的研究进展,并对比分析了不同渗流结构的优缺点。基于上述评述,展望了有机-无机复合电解质的未来发展趋势和方向。  相似文献   

17.
陈规伟  龚正良 《电化学》2021,27(1):76-82
石榴石固体电解质由于其高的离子电导率,对锂金属稳定等优点成为了下一代高性能锂电池的重要研究方向之一.但锂金属负极界面浸润性与锂枝晶问题限制了其应用.本文通过简单的液相沉积结合高温烧结的方法,在石榴石固体电解质片表面构建了一层稳定的硼酸三锂(Li3BO3)修饰层.研究表明,Li3BO3 修饰层可以有效改善石榴石固体电解质...  相似文献   

18.
将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定EO/Li摩尔比为13)后, 采用溶液浇注法制备了一系列不同Li1.5Al0.5Ge1.5(PO4)3(LAGP)与PEO质量比的LAGP-PEO(LiTFSI)固体复合电解质体系. 结合电化学阻抗法、 表面形貌表征以及与惰性陶瓷填料(SiO2, Al2O3) 性能的对比分析, 探讨了LAGP在固体复合电解质中的作用机理以及锂离子的导电行为. 结果表明, 在以LAGP为主相的固体复合电解质中, PEO主要处于无定形态, 整个体系主要为PEO与LiTFSI的络合相、 LAGP与PEO(LiTFSI)相互作用形成的过渡相和LAGP晶相. 其中LAGP作为主要的导电基体不仅起到降低PEO结晶度、 改善两相导电界面的作用; 同时自身也可以作为离子传输的通道, 降低锂离子迁移的活化能, 从而使离子电导率得到提高. 当LAGP与PEO的质量比为6:4时, 固体复合电解质的成膜性能最好, 离子电导率最高, 在30 ℃时为2.57×10-5 S/cm, 接近LAGP的水平, 电化学稳定窗口超过5 V.  相似文献   

19.
Lithium metal batteries, which use lithium metal as the anode, have attracted tremendous research interest in recent years, owing to their high energy density and potential for future energy storage applications. Despite their advantages such as high energy density, the safety concerns and short lifespan significantly impede their practical applications in transportation and electronic devices. Tremendous efforts have been devoted to overcoming these problems, including materials design, interface modification, and electrolyte engineering. Among these strategies, electrolyte regulation plays a key role in improving the efficiency, stability, and safety of lithium metal anodes. As an important class of electrolyte components, fluorinated solvents, which can decompose to form LiF-rich interphase layers on both anode and cathode, have been proven to enhance the stability of lithium metal anodes and improve the oxidative stability of the electrolytes. Meanwhile, the spatial structure of fluorinated solvents, such as the number and sites of fluorine atoms, can influence the physicochemical properties of the electrolytes and the compositions/structure of the solid-electrolyte interphase, which eventually dictates the cycling performance of Li metal batteries. Recently, many fluorinated solvents with different molecular structures have been designed to regulate the solvation structure of electrolytes, and these solvents exhibit novel electrochemical properties in lithium metal batteries. However, there are few comprehensive reviews that summarize the fluorinated solvents used in Li metal batteries and discuss their functions in electrolytes and their physicochemical properties. This review summarizes the novel fluorinated solvents used in lithium metal batteries in recent years, which have been classified into three parts: diluents, traditional solvents, and novel molecules, based on their functions in the electrolytes. In every part, the understanding of the interactions between fluorinated solvents and Li ions, the decomposition mechanism of fluorinated solvents at the interface of the electrode, the functions of fluorinated solvents in the electrolytes, and the structure-activity relationship between the fluorinated solvents and battery performance have been comprehensively summarized and discussed. Moreover, the advantages and disadvantages of fluorinated solvents have been discussed, and the importance of precisely controlling the number of fluorine atoms and the structure of fluorinated solvents has been emphasized. At the end of this review, a perspective for designing new fluorinated solvents has been proposed. We believe that this review can provide insights on designing novel fluorinated solvents for high-performance Li metal batteries.   相似文献   

20.
近年来,锂金属电池由于具有较高的能量密度而成为储能领域的研究热点。电解液作为锂金属电池的“血液”发挥着至关重要的作用。在传统锂离子电池电解液中,锂金属负极与电解液之间的界面副反应严重并伴随着锂枝晶生长,从而导致安全隐患以及循环寿命缩短等问题。在解决锂金属负极问题上,电解液调控策略具有易操作性和有效性,因而在推动锂金属电池发展方面具有举足轻重的地位。氟代电解液是目前重要的研究方向,氟代电解液在循环过程中能够在电极表面形成富含LiF的固体电解质界面膜(SEI);该界面膜不仅可以有效抑制负极锂枝晶的形成,并且在正极方面能够大幅提高电解液的氧化稳定性,从而提升高电压正极的适配性和锂金属电池的循环稳定性。氟代电解液中氟代溶剂/氟代锂盐的分子结构对电解液的溶剂化结构有重要影响。当氟代溶剂分子中氟原子的位置与数量不同时,氟代溶剂的物理化学性质也会随之发生变化,进而改变了电解液与电极的界面反应性。因此,氟代溶剂能够起到调制SEI膜成分和结构的作用,是决定电池性能的关键因素。本文总结了应用于锂金属电池的主要氟代溶剂,尤其是近几年来发展的新型氟代溶剂;着重介绍了高度氟代的溶剂分子作为局域超浓电解液的稀释剂,以及对溶剂进行精准分子设计得到的部分氟代溶剂等。此外,本文还分析探讨了氟代溶剂分子与电池性能之间的构效关系,展望了构建新型氟代溶剂分子的策略,希望能对电解液溶剂分子的结构设计以及构效关系的评估有一定的启发意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号