首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Direct methanol fuel cells (DMFCs), as one of the important energy conversion devices, are of great interest in the fields of energy, catalysis and materials. However, the application of DMFCs is presently challenged because of the limited activity and durability of cathode catalysts as well as the poisoning issues caused by methanol permeation to the cathode during operation. Herein, we report a new class of Rh-doped PdCu nanoparticles (NPs) with ordered intermetallic structure for enhancing the activity and durability of the cathode for oxygen reduction reaction (ORR) and achieving superior methanol tolerance. The disordered Rh-doped PdCu NPs can be prepared via a simple wet-chemical method, followed by annealing to convert it to ordered phases. The results of transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), power X-ray diffraction (PXRD) analysis and high resolution TEM (HRTEM) successfully demonstrate the formation of near-spherical NPs with an average size of 6.5 ± 0.5 nm and the conversion of the phase structure. The complete phase transition temperatures of Rh-doped PdCu NPs and PdCu are 500 and 400 ℃, respectively. The molar ratio of Rh/Pd/Cu in the as-synthesized Rh-doped PdCu NPs is 5/48/47. Benefitting from Rh doping and the presence of the ordered intermetallic structure, the Rh-doped PdCu intermetallic electrocatalyst achieves the maximum ORR mass activity of 0.96 A·mg-1 at 0.9 V versus reversible hydrogen electrode (RHE) under alkaline conditions—a 7.4-fold enhancement compared to the commercial Pt/C catalyst. For different electrocatalysts, the ORR activities follow the sequence, ordered Rh-doped PdCu intermetallics > ordered PdCu intermetallics > disordered Rh-doped PdCu NPs > disordered PdCu NPs > commercial Pt/C catalyst. In addition, the distinct structure endows the Rh-doped PdCu intermetallics with highly stable ORR durability with unaltered half-wave potential (E1/2) and mass activity after continuous 20000 cycles, which are higher than those of other electrocatalysts. Furthermore, the E1/2 of the Rh-doped PdCu intermetallics decreases by only 5 mV after adding 0.5 mol·L-1 methanol to the electrolyte, while the commercial Pt/C catalyst negatively shifts by 235 mV and a distinct oxidation peak can be observed. The results indicate that the ORR activity of the Rh-doped PdCu intermetallic electrocatalyst can be well maintained even in the presence of poisoning environment. Our results have demonstrated that Rh-doped PdCu NPs with ordered intermetallic structures is a potential electrocatalyst toward the next-generation high-performance DMFCs.  相似文献   

2.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

3.
原子捕获法是在高温条件下制备高热稳定单原子催化剂的有效方法之一. 但该方法制备的单原子催化剂通常面临着催化活性低、 反应适用范围窄的问题. 因此, 拓展这类单原子催化剂的应用是亟待解决的难点. 本文采用高温捕获法制备的铱(Ir)单原子催化剂在氮氧化物分解反应中的催化活性较低, 但是在继续负载纳米粒子后, 单原子与纳米粒子之间表现出显著的协同催化作用. X射线光电子能谱(XPS)和CO吸附的原位漫反射红外光谱(CO-DRIFTs)表征结合反应动力学分析揭示了反应的活性中心是金属态的Ir纳米粒子. 虽然氧化态的Ir单原子不能直接活化N2O分子, 但是可以改变Ir纳米粒子的电子结构和吸附性能. 氧气程序升温脱附(O2-TPD)实验证实, 单原子的存在可以促进O2从Ir纳米粒子上脱附, 从而提高催化剂的反应活性.  相似文献   

4.
近年来,催化CO2加氢合成甲醇被视为有望解决温室效应和燃料枯竭的有效途径。目前,铜基催化剂因具有较高的反应活性被广泛应用于工业生产。然而,竞争逆水煤气变换反应产生的CO导致甲醇选择性较低,同时副产物水引起Cu发生不可逆烧结,进而降低甲醇产率。众所周知,CO能够调整分子的表面竞争吸附和活性位的氧化还原行为,本工作拟向原料气中掺入具有还原性的CO以抑制逆水煤气变换反应和防止表面氧化中毒。另一方面,通常认为铜基催化的CO2加氢制甲醇是结构敏感性反应,不同的前驱体能够显著影响催化剂结构和形貌,进而影响催化活性。因此,我们首先通过共沉淀法和蒸氨法制备了含有类水滑石前驱体(CHT-CZA)和复合物前驱体(CNP-CZA)结构的Cu/ZnO/Al2O3催化剂。随后,为探究CO掺杂后反应机理,在250 ℃,5 MPa的反应条件下,含有不同比例CO的原料气中(CO2:CO:H2:N2 = x:(24.5 - x):72.5:3)评价两种催化剂对甲醇合成的性能。评价结果显示两种催化剂反应性能趋势相同,随着CO含量增加,CO2转化率和STYH2O不断降低,STYMeOH逐渐增加。X射线光谱(XPS)显示随CO含量增加,催化剂表面还原性Cu比例增加。评价和表征结果说明CO引入抑制了逆水煤气变换反应的发生,通过还原被H2O氧化的活性Cu表面,促使更多的活性Cu位点暴露参与甲醇合成。另一方面,透射电镜(TEM)显示掺杂的CO会过度还原而引起颗粒团聚,导致催化剂逐渐失活。相比之下,含有水滑石前驱体的催化剂在任何气氛下均表现出更加优越的反应性能和长周期稳定性。这可归因于类水滑石前驱体独特的片层结构通过结构限域作用有效避免了因CO过度还原而导致的金属颗粒团聚,从而减少活性位点损失。  相似文献   

5.
李晶  孙翔  段永正  贾冬梅  李跃金  王建国 《催化学报》2021,42(6):963-970,中插15-中插16
燃料电池具有能量转换效率高的优点,是能量转换与储存的高效器件之一.目前,燃料电池阴极氧还原反应(ORR)动力学缓慢,并且催化ORR大量使用铂碳(Pt/C)催化剂,由于Pt储量少,价格高,载体碳材料易发生碳蚀导致催化剂稳定性降低,限制了其进一步商业化应用.钯(Pd)与Pt为同族元素,具有相似的电子结构和化学性质,其储量是Pt的50倍,同时,Pd具有良好的抗甲醇毒性和抗一氧化碳毒性,因此,被视为燃料电池中阴极Pt催化剂的潜在替代品.但商用Pd/C催化剂的ORR活性较Pt/C差,因此,大量的研究工作集中在提高Pd基ORR催化剂的活性方面:将Pd与具有3d轨道的金属形成合金或将Pd负载到不同的载体上.通过选择合适的载体影响Pd的电子结构,从而提高催化剂活性和稳定性,是一种较简单的、有利于规模化生产Pd基ORR催化剂的方法.碳化硅(SiC)具有良好的电化学稳定性、热稳定性、机械强度和较强的供电子能力,可被用作ORR的金属催化剂载体.然而,由于金属与SiC作用较弱,需要制备特殊形貌的SiC或将SiC表面改性;通常,这些SiC基载体的制备过程复杂并且成本高.而在有氧条件下制备、保存或使用SiC时,其表面不可避免地被氧化,这种在温和条件下生成的表面具有含氧官能团的SiC,由于制备过程简便,可以大规模生产,且与金属有强的相互作用,是一种很有前景的ORR的Pd基催化剂载体.对于用于替代Pt基催化剂的负载型Pd基ORR催化剂的开发和大规模制造来说,对载体表面改性的深入了解是一个重要并且具有挑战性的课题.目前尚未发现关于SiC表面的含氧基团对ORR性能影响的报道.因此,详细考察SiC载体上含氧基团在ORR中的作用对于理解、设计和开发具有优异ORR性能的SiC负载催化剂至关重要.本文采用沉积沉淀法在表面部分氧化的碳化硅(O-SiC)均匀负载了平均直径为5.2 nm的Pd纳米颗粒.与20 wt%商业Pt/C相比,制备的2.5 wt%Pd/O-SiC催化剂显示出较好的ORR活性(半波电位正向移动10 mV),较好的稳定性(10 h后,电流密度损失3.5%vs.34.9%),和较高的抗甲醇毒性.结构表征及密度泛函理论(DFT)计算结果表明,与Pd/C相比,Pd/O-SiC具有优异的ORR性能主要是由于O-SiC载体对Pd纳米颗粒具有电子调控作用,使Pd带负电.富电子Pd增强了ORR关键中间体OOH的吸附,降低了反应的吉布斯自由能,从而提高了ORR活性.另外,O-SiC载体对Pd纳米颗粒具有大的结合能和较好的SiC稳定性,增强了Pd/O-SiC催化剂的抗甲醇毒性及稳定性.DFT计算结果表明,SiC表面部分氧化后,仍保持对Pd的较高结合能,同时大幅增强了催化剂对中间体的吸附,降低了ORR关键电化学步骤吉布斯自由能,从而提高了氧还原性能.因此,本工作明确了SiC表面氧化的作用,同时提供了一种简易大规模制备高效负载型铂基替代ORR催化剂的策略.  相似文献   

6.
Carbon supported PdCo catalysts in varying atomic ratios of Pd to Co, namely 1 : 1, 2 : 1 and 3 : 1, were prepared. The oxygen reduction reaction (ORR) was studied on commercial carbon-supported Pd and carbon-supported PdCo nanocatalysts in aqueous 0.1 M KOH solution with and without methanol. The structure, dispersion, electrochemical characterization and surface area of PdCo/C were determined by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV), respectively. The electrochemical activity for ORR was evaluated from Linear Sweep Voltammograms (LSV) obtained using a rotating ring disk electrode. The catalysts were evaluated for their electrocatalytic activity towards oxygen reduction reaction (ORR) in Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs). PdCo(3 : 1)/C gives higher performance (85 mW cm(-2)) than PdCo(1 : 1)/C, PdCo(2 : 1)/C and Pd/C. The maximum electrocatalytic activity for ORR in the presence of methanol was observed for PdCo(3 : 1)/C. First principles calculations within the framework of density functional theory were performed to understand the origin of its catalytic activity based on the energy of adsorption of an O(2) molecule on the cluster, structural variation and charge transfer mechanism.  相似文献   

7.
The development of superior non‐platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen‐reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells, but still a great challenge. Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu‐based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo. Under the dual tuning on the composition and intermetallic phase, the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol‐oxidation reaction (EOR) than those of disordered PdCuM NPs, the commercial Pt/C and Pd/C catalysts. The density functional theory (DFT) calculations reveal that the improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on the Pd surface owing to the smaller atomic size of Cu, Co, and Ni.  相似文献   

8.
与贵金属铂基电化学氧还原反应(ORR)催化剂相比,廉价的非贵金属催化剂引起了广泛的关注。本文以壳聚糖作为一种富含氮和碳元素的生物质资源,利用碳浴法成功制备了氮掺杂碳原位负载铜纳米颗粒(Cu/N-C)催化剂。纯壳聚糖碳化得到的样品N-C的比表面积为67.5 m2·g-1、平均孔径0.14 nm、平均孔体积8.00 m2·g-1,与之相比,Cu/N-C比表面积可达607.3 m2·g-1、平均孔径为2.5 nm、平均孔体积为0.40 cm3·g-1。通过密度泛函理论(DFT)进行计算表明,Cu(111)/N-C的自由能值低于N-C,更有利于氧还原催化进行。在0.1 mol·L-1 KOH的介质中,Cu/N-C不仅表现出优异的起始和半波电势(分别为0.96 V和0.84 V),而且还表现出了优异的抗甲醇性能和稳定性,并且Cu元素掺杂量达到1.67wt.%。  相似文献   

9.
Cathode catalysts for direct alcohol fuel cells(DAFCs) must have high catalytic activity for the oxy-gen reduction reaction(ORR), low cost, and high tolerance to the presence of methanol or ethanol. Pt is the benchmark catalyst for this application owing to its excellent electrocatalytic activity, but its high cost and low tolerance to the organic fuel permeating through the membrane have hindered the commercialization of DAFCs. Herein we present a facile synthesis route to obtain organic fuel-tolerant Zr- and Ta-based catalysts supported on carbon. This method consists of a simple precipitation of metal precursors followed by a heat treatment. X-ray diffraction analyses confirmed that the obtained samples were crystalline ZrO 2-x and Na2Ta8O21-x having crystallite sizes of 26 and 32 nm, respectively. The thermal treatment effectively increased the activity of the catalysts to-wards the ORR, although further optimization is necessary. Both catalysts exhibited a high tolerance to the presence of methanol with only a moderate reduction in ORR activity even at high methanol concentration(0.5 mol/L).  相似文献   

10.
We present here a critical review of several technologically important electrocatalytic systems operating in alkaline electrolytes. These include the oxygen reduction reaction (ORR) occurring on catalysts containing Pt, Pd, Ir, Ru, or Ag, the methanol oxidation reaction (MOR) occurring on Pt-containing catalysts, and the ethanol oxidation reaction (EOR) occurring on Ni-Co-Fe alloy catalysts. Each of these catalytic systems is relevant to alkaline fuel cell (AFC) technology, while the ORR systems are also relevant to chlor-alkali electrolysis and metal-air batteries. The use of alkaline media presents advantages both in electrocatalytic activity and in materials stability and corrosion. Therefore, prospects for the continued development of alkaline electrocatalytic systems, including alkaline fuel cells, seem very promising.  相似文献   

11.
A series of Fe3C/C‐Nx nanoparticles (NPs) with different nitrogen content are prepared by a simple one‐pot route. In the synthetic procedure, aniline and acetonitrile are simultaneously used as the carbon and nitrogen source. The effect of calcination temperature on the structural and functional properties of the materials is investigated. Magnetic measurement shows that the sample prepared at 800 °C (Fe3C/C‐N800 NPs) possesses the highest Ms value of 77.2 emu g?1. On testing as oxygen reduction reaction (ORR) catalysts, the sample prepared at 750 °C (Fe3C/C‐N750 NPs) shows the best ORR performance among the series, with a more positive onset potential (+0.99 V vs. RHE), higher selectivity (number of electron transfer n≈3.93), longer durability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 m KOH solution. Moreover, in acidic solution, the excellent ORR activity and stability are also exhibited.  相似文献   

12.
The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high‐performance, non‐precious‐metal catalysts as alternatives to noble metal Pt‐based ORR electrocatalysts is highly desirable for the large‐scale commercialization of fuel cells. TiO2‐grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2–ZA–[Cu(phen)(BTC)] shows surprisingly high selectivity for the 4 e? reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole‐containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis‐phosphoric acid anchoring group. Rational optimization of the copper catalyst’s ORR performance was achieved by using an electron‐deficient ligand, 5‐nitro‐1,10‐phenanthroline (phen), and bridging benzene‐1,3,5‐tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high‐performance, non‐precious‐metal ORR catalysts.  相似文献   

13.
Cathode catalysts for direct alcohol fuel cells (DAFCs) must have high catalytic activity for the oxy‐gen reduction reaction (ORR), low cost, and high tolerance to the presence of methanol or ethanol. Pt is the benchmark catalyst for this application owing to its excellent electrocatalytic activity, but its high cost and low tolerance to the organic fuel permeating through the membrane have hindered the commercialization of DAFCs. Herein we present a facile synthesis route to obtain organic fuel‐tolerant Zr‐ and Ta‐based catalysts supported on carbon. This method consists of a simple precipitation of metal precursors followed by a heat treatment. X‐ray diffraction analyses confirmed that the obtained samples were crystalline ZrO2?x and Na2Ta8O21?x having crystallite sizes of 26 and 32 nm, respectively. The thermal treatment effectively increased the activity of the catalysts to‐wards the ORR, although further optimization is necessary. Both catalysts exhibited a high tolerance to the presence of methanol with only a moderate reduction in ORR activity even at high methanol concentration (0.5 mol/L).  相似文献   

14.
Combining the advantages of homogeneous and heterogeneous catalysts, single‐atom catalysts (SACs) are bringing new opportunities to revolutionize ORR catalysis in terms of cost, activity and durability. However, the lack of high‐performance SACs as well as the fundamental understanding of their unique catalytic mechanisms call for serious advances in this field. Herein, for the first time, we develop an Ir‐N‐C single‐atom catalyst (Ir‐SAC) which mimics homogeneous iridium porphyrins for high‐efficiency ORR catalysis. In accordance with theoretical predictions, the as‐developed Ir‐SAC exhibits orders of magnitude higher ORR activity than iridium nanoparticles with a record‐high turnover frequency (TOF) of 24.3 e? site?1 s?1 at 0.85 V vs. RHE) and an impressive mass activity of 12.2 A mg?1Ir, which far outperforms the previously reported SACs and commercial Pt/C. Atomic structural characterizations and density functional theory calculations reveal that the high activity of Ir‐SAC is attributed to the moderate adsorption energy of reaction intermediates on the mononuclear iridium ion coordinated with four nitrogen atom sites.  相似文献   

15.
Noble-metal-free CuMo nanoparticles (NPs) without surfactant or support have been facilely prepared using NaBH4 as a reducing agent. The as-prepared CuMo nanocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area measurements, and used as catalysts for the hydrolysis of ammonia borane (AB, NH3BH3) at room temperature. The as-synthesized Cu0.9Mo0.1 NPs exhibited a high activity towards the hydrolysis of AB with a turnover frequency (TOF) of 14.9 min-1, a higher value than that reported for Cu catalysts. Our synthesis is not limited to CuMo NPs alone, but can easily be extended to CuW (3.6 min-1), CuCr (2 min-1), NiMo (55.6 min-1), and CoMo (21.7 min-1) NPs, providing a general approach to Cu-M (M = Mo, W, Cr) and TM-Mo (TM = Cu, Ni, Co) NPs as a series of novel catalysts for the hydrolysis of AB. The enhanced activity of bimetallic NPs may be attributed to the synergistic effects of the Cu-M NPs induced by the strain and ligand effects.  相似文献   

16.
《中国化学快报》2021,32(8):2427-2432
Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have prepared the Cu/Cu_2 O-NC catalyst with excellent ORR performance and high stability,due to the synergistic effect of Cu and Cu_2 O nanoparticles.The half-wave potential(0.8 V) and the limiting-current density(5.20 mA/cm~2) of the Cu/Cu_2 O-NC are very close to those of the 20% Pt/C catalyst(0.82 V,5.10 mA/cm~2).Besides,it exhibits excellent performance with a maximal power density of 250 mW/cm~2 and a stable continuous discharge for more than 90 h in the Al-air battery test The promoting effects of Cu_2 O towards Cu-based ORR catalysts are illustrated as follows:(ⅰ) Cu_2 O is the major ORR active site by the redox of Cu(Ⅱ)/Cu(Ⅰ),which provides excellent ORR activities;(ⅱ) Cu can stabilize the location of Cu_2 O by assisting the electron transfer to Cu(Ⅱ)/Cu(Ⅰ) redox,which is conducive to the high stability of the catalyst.This work provides a useful strategy for enhancing the ORR performance of Cu-based catalysts.  相似文献   

17.
Ir–V nanoparticles supported on microstructure controlled carbon nanofibers (CNFs) or on carbon black, Vulcan XC-72 (XC-72), have been synthesized via chemical reduction, and the oxygen reduction reaction (ORR) properties of catalysts are investigated in this paper. The physico-chemical properties are characterized by high resolution transmission electron microscope (HRTEM), N2 physisorption and electrochemical analysis. HRTEM results show that the metal nanoparticles are separated on carbon support with well-controlled particle size, dispersity, and composition uniformity. Moreover, the metal nanoparticles on CNFs have a smaller size than those on XC-72. Cyclic voltammetric analysis reveals that Ir–V/CNFs exhibits a higher ORR activity than Ir–V/XC-72, and this may be associated with the smaller metal nanoparticles and the stronger metal-support interaction of Ir–V/CNFs. Linear sweep voltammetric analysis at different rotation rates proves that ORR on the Ir–V/CNFs electrode is a 4e? process.  相似文献   

18.
Improving the electrocatalytic activity and durability of Pt‐based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well‐defined Pd@Pt core–shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4–1.2 nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as‐synthesized 6 nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well‐defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94 nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94 nm Pt shells in a membrane electrode assembly revealed a single‐cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low‐cost and high‐efficient applications of PEMFCs.  相似文献   

19.
添加表面活性剂两步沉淀法制备甲醇催化剂   总被引:13,自引:4,他引:9  
采用添加表面活性剂两步沉淀法制备了具有高表面铜相对浓度的超细甲醇合成催化剂。以组成为H2/CO/CO2/N2=66/27/3/4(体积比)的原料气对催化剂进行了活性评价。结果表明,该催化剂比传统并流沉淀法制备的铜基催化剂活性提高47.9%,比两步沉淀法和添加表面活性剂并流沉淀法制备的铜基催化剂活性分别提高9.3%和16.8%。利用SEM、XRD及XPS方法对催化剂的结构、形貌和表面金属组成进行了表征。  相似文献   

20.
The burgeoning demand for clean and energy-efficient fuel cell system requires electrocatalysts to deliver greater activity and selectivity. Bimetallic catalysts have proven superior to single metal catalysts in this respect. This work reports the preparation, characterization, and electrocatalytic characteristics of a new bimetallic nanocatalyst. The catalyst, Pt-Au-graphene, was synthesized by electrodeposition of Pt-Au nanostructures on the surface of graphene sheets, and characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the molar ratio between Pt and Au precursors. The electrocatalytic characteristics of the nanocatalysts for the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) were systematically investigated by cyclic voltammetry. The Pt-Au-graphene catalysts exhibits higher catalytic activity than Au-graphene and Pt-graphene catalysts for both the ORR and the MOR, and the highest activity is obtained at a Pt/Au molar ratio of 2:1. Moreover, graphene can significantly enhance the long-term stability of the nanocatalyst toward the MOR by effectively removing the accumulated carbonaceous species formed in the oxidation of methanol from the surface of the catalyst. Therefore, this work has demonstrated that a higher performance of ORR and the MOR could be realized at the Pt-Au-graphene electrocatalyst while Pt utilization also could be greatly diminished. This method may open a general approach for the morphology-controlled synthesis of bimetallic Pt-M nanocatalysts, which can be expected to have promising applications in fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号