首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most important topics in the world today are environmental and resource issues. The development of green and clean energy is still one of the great challenges of social sustainable development. Two-dimensional(2D) metal-organic frameworks(MOFs) and derivatives have exceptional potential as high-efficiency electrocatalysts for clean energy technologies. This review summarizes various synthesis strategies and applications of 2D MOFs and derivatives in electrocatalysis. Firstly, we will outline the advantages and uniqueness of 2D MOFs and derivatives, as well as their applicable areas. Secondly, the synthetic strategies of 2D MOFs and derivatives are briefly classified. Each category is summarized and we list classic representative fabrication methods, including specific fabrication methods and mechanisms, corresponding structural characteristics, and insights into the advantages and limitations of the synthesis method. Thirdly, we separately classify and summarize the application of 2D MOFs and derivatives in electrocatalysis, including electrocatalytic water splitting, oxygen reduction reaction(ORR), CO2 reduction reaction(CO2RR), and other electrocatalytic applications. Finally, the development prospects and existing challenges to 2D MOFs and derivatives are discussed.  相似文献   

2.
Due to the burning of fossil fuels, the level of carbon dioxide(CO2) in the atmosphere gradually rises, leading to serious greenhouse effect and environmental problems. Electrocatalytic reduction of CO2 is currently an efficient way to convert CO2 to value-added products. Bismuth(Bi)-based nanomaterials have raised great interests due to their excellent activity and high selectivity to electrocatalytic CO2 reduction. In this review, the fundamental principles of electrochemical CO2 reduction reaction(CO2RR) are introduced at first. Moreover, the recent development of Bi-based electrocatalytic materials including Bi with various nanostructures(nanoparticle, nanosheet, etc.), Bi-based compounds(Bi oxide, bimetal chalcogenide, etc.), and Bi/C nanocomposites are summarized. In the end, the future prospects and challenges of electrocatalysts for CO2 reduction are discussed.  相似文献   

3.
In this roadmap, we address the development and perspectives of hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction and nitrogen reduction.  相似文献   

4.
具有独特电子结构和丰富催化位点的二维金属有机框架材料是具有高活性的CO2还原反应的电催化剂. 本文基于密度泛函理论(DFT)计算, 发现单层Co-BHT(BHT=benzenehexathiol, 苯六硫醇)将CO2还原为CH4时具有很高的催化活性. 吉布斯自由能变化计算结果表明, 在Co-BHT上将CO2还原成CH4的最佳反应路径为CO2*COOH→*CO→*CHO→*CHOH→*CH→*CH2*CH3→CH4; 整个反应的速度控制步骤为*CO→*CHO; 速度控制步骤的吉布斯自由能变化(ΔGL)为0.66 eV, 比在二维Cu-C3N4GL=0.75 eV)和传统的Cu(211) 表面(ΔGL=0.74 eV) 将CO2还原为CH4的吉布斯自由能变化都小. 而在单层Cu-BHT表面的反应路径和速度控制步骤 (CO2*COOH)与Co-BHT均不同, 且ΔGL为0.76 eV. 与Cu-BHT相比, Co-BHT将CO2还原为CH4的ΔGL更低, 这可能归因于Co-BHT的d能带中心高于Cu-BHT, 导致Co-BHT与中间体的相互作用更强.  相似文献   

5.
Single-atom catalysis is the “hot spot” in the field of catalysis due to the special geometries, electronic states, and their unique catalytic performance. Single-atom catalysts(SACs), isolated metal atoms dispersed on the support, show the highest atom efficiency, cutting down the potential cost in the industrial process. Consequently, this “homo-hetero” catalyst could be a promising candidate for the next-generation catalysts. The applications for the SACs are widely reported, like gas-solid reactions, organic reactions, and electro-catalysis. In this mini- review, we will focus on the recent work of SACs on electro-catalysis, including hydrogen evolution reaction(HER), oxygen reduction reaction(ORR), oxygen evolution reaction(OER), CO2 reduction reaction(CO2 RR), and nitrogen reduction reaction(NRR).  相似文献   

6.
全球的动力来源主要依靠化石能源,然而无节制地开采引起了一系列的能源危机和环境问题,例如,能源枯竭、气温逐年升高、气候恶化和海洋酸化等,这已经威胁了人类的可持续发展,因此寻找可再生能源和减缓二氧化碳的排放成为目前的关键问题,反应条件相对温和的电催化二氧化碳还原反应(CO2RR)可将CO2转化为具有工业价值的产品,例如C1、C2和C2+,这是解决“碳中和”的一种有效措施。电催化CO2RR是一个复杂的多个电子/质子转移过程,反应机理相对复杂,涉及很多反应中间体,影响产物的选择性,CO2RR的大规模应用需要开发低成本和高效的电催化剂。具有大比表面积、100%的原子利用率、不饱和配位、相对均匀的活性位点的原子分散的金属和氮共掺杂碳(M-N-C)材料是一种很有前途的催化剂。M-N-C材料具有可调变性,通过调节中心金属离子或中心金属离子的配位环境,中心金属离子的电子性质和原子结构将会发生变化,这为设计具有高效催化CO2性能的催化剂提供了新的途径。因此,探讨在原子水平上调控M-N-C材料的电子...  相似文献   

7.
付阳  谢起贤  武琳晓  罗景山 《催化学报》2022,43(4):1066-1073
近年来,由于化石燃料不断消耗造成的二氧化碳气体过量排放,对人类生活环境造成越来越大的威胁.电催化二氧化碳还原反应是一种很有前景的解决方法,可回收废弃的二氧化碳并通过将其转化为可再生的燃料和化学品来最终实现碳循环.在各种还原产物中,多碳化学产物因其具有高能量密度和高商业价值而备受青睐.然而,由于涉及多个复杂的反应途径,设...  相似文献   

8.
Industrial revolution has led to increased combustion of fossil fuels. Consequently, large amounts of CO2 are emitted to the atmosphere, throwing the carbon cycle out of balance. Currently, the most effective method to reduce the CO2 concentration is direct CO2 capture from the atmosphere and pumping of the captured CO2 deep underground or into the mid-ocean. The transformation of CO2 into high-value chemicals is an attractive yet challenging task. In recent years, there has been much interest in the development of CO2 utilization technologies based on electrochemical CO2 reduction, photochemical CO2 reduction, and thermal CO2 reduction, and CO2 valorization has emerged as a hot research topic. In electrochemical CO2 reduction, the cathodic reaction is the reduction of CO2 to value-added chemicals. The anodic reaction should be the oxygen evolution reaction, and water is the only renewable and scalable source of electrons and protons in this reaction. There is a plethora of research on the use of various metals to catalyze this reaction. Among these, Cu-based materials have been demonstrated to show unique catalytic activity and stability for the electrochemical conversion of CO2 to valuable fuels and chemicals. Moreover, the solar-driven conversion of CO2 into value-added chemical fuels has attracted great attention, and much effort is being devoted to develop novel catalysts for the photoreduction of CO2, especially by mimicking the natural photosynthetic process. The key step in the photocatalytic process is the efficient generation of electron-hole pairs and separation of these charge carriers. The efficient separation of photoinduced charge carriers plays a crucial role in the final catalytic activity. Compared with CO2 reduction via electrocatalysis and photocatalysis, thermal reduction is more attractive because of its potential large-scale application in the industry. Heterogeneous nanomaterials show excellent activity in the electrocatalytic, photocatalytic, and thermal catalytic conversion of CO2. However, nanostructured materials have drawbacks on the investigation of the intrinsic activity of the active sites. In recent years, single-site catalysts have become popular because they allow for maximum utilization of the metal centers, show specific catalytic performance, and facilitate easy elucidation of the catalytic mechanism at the molecular level. Accordingly, numerous single-site catalysts were developed for CO2 reduction to produce value-added chemicals such as CO, CH4, CH3OH, formate, and C2+ products. Value-added chemicals have also been synthesized with the aid of amines and epoxides. This review summarizes recent state-of-the-art single-site catalysts and their application as heterogeneous catalysts for the electroreduction, photoreduction, and thermal reduction of CO2. In the discussion, we will highlight the structure-activity relationships for the catalytic conversion of CO2 with single-site catalysts.  相似文献   

9.
高温熔融盐具有CO2吸收容量大、电化学窗口宽、高温下反应动力学快等特点,是利用清洁电能大规模捕集和资源化利用CO2颇具实用化潜力的电解液体系. 本文主要介绍作者课题组近十年关于高温熔盐CO2捕集与电化学资源化转化(MSCC-ET)技术的相关研究工作,包括熔融盐电解质对CO2的吸收、阴极过程动力学、电解条件对产物的影响、析氧阳极、电解过程能量效率和CO2捕获潜力,并展望了MSCC-ET技术的发展前景.  相似文献   

10.
研究了3种不同阳极(铜丝,镀锌铁丝和镍丝)材料对在熔盐中电化学还原CO_(2)制备的碳材料结构和形貌的影响,并探究了制备的3种碳材料,中空四面体碳(HQC,Cu作为阳极时的还原产物)、碳纳米片(CNS,Fe作为阳极时的还原产物)和海绵状多孔碳(SPC,Ni作为阳极时的还原产物),对2电子氧还原反应(2e;ORR)的电催化性能。研究表明,使用镀锌铁丝作为阳极材料制备的CNS由大量的碳纳米片构成,且该纳米片上具有丰富的孔洞结构以及较大的I_(D)/I_(C)(Raman光谱中D峰与G峰的强度之比,其比值反映材料的缺陷程度)值(0.996)。与HQC和SPC相比,CNS表现出最高的2e;ORR电催化活性和H_(2)O_(2)选择性(接近90%)。CNS的高活性和高选择性归因于其高的I_(D)/I_(C)值和高C—O/C=O比值,说明结构缺陷和C—O/C=O官能团对CNS催化性能至关重要。此外,CNS还具有非常优异的电催化稳定性,在长达14 h的恒电压电化学催化测试后,环电流几乎无衰减。这种以CO_(2)为碳源合成可用于电催化合成过氧化氢(H_(2)O_(2))的碳材料的方法,不仅可以作为缓解温室效应的潜在选项,也为CO_(2)衍生碳的实际应用提供了新的思路。  相似文献   

11.
大规模化石燃料的使用排放了大量的二氧化碳(CO2),导致环境中二氧化碳的含量急剧增加. 为了降低大气中二氧化碳的含量,以电催化的方法将二氧化碳转化为有用的化工原料和燃料是解决能源和环境问题的重要途径. 本文主要利用氧化还原刻蚀法,在铜表面形成复合纳米结构,用于二氧化碳的电催化还原反应研究. 首先,作者通过一定浓度的三氯化铁(FeCl3)溶液与铜片的氧化还原反应,在刻蚀铜表面时形成具有立方体结构的氯化亚铜纳米材料,用于二氧化碳的电催化还原反应. 为了研究反应时间对催化性能的影响,作者通过改变反应时间(1、2、3和4 h)合成了不同结构的铜基催化剂. 研究发现,在反应3 h后,Cu-3h催化剂对二氧化碳的电催化还原具有较小的起始电压(-0.3 V vs. RHE)和较大的电流密度值,表现出了较强的还原能力. 经检测,所得到主要还原产物为一氧化碳(CO)和甲烷(CH4). 在-0.6 V时,二氧化碳催化还原的法拉第效率可达到60%,表明以氧化还原法刻蚀铜表面具有较好的改善二氧化碳电催化还原的能力.  相似文献   

12.
发展氧气还原反应(ORR)的二电子高效电催化剂一直是燃料电池领域的研究热点,但针对具有二电子还原特征且可应用于水处理领域电极材料的研究还处在起步阶段。本综述介绍了近年来二电子还原特征的贵金属电极材料及其在电催化处理水中污染物的研究进展。在Fe~(2+)存在下,Pd基电极材料催化氧气还原合成H_2O_2,间接催化氧化水中有机污染物,实现有机物的矿化降解和水质的净化;Pd基电极催化还原水中有机污染物、无机盐等,将其转化为低毒性、易处理产物并彻底去除;Pd基催化电极的高效电子传导性能增强了水中重金属离子的氧化/还原转化,实现重金属去除。本综述展望了纳米电极材料在水处理应用的机遇与发展方向。  相似文献   

13.
实现碳氮循环是人类社会发展的迫切要求,也是催化领域的热门研究课题。在可再生能源的推动下,电催化技术引起了人们的广泛关注,且可以通过改变反应电压获得不同的目标产品。基于此,电催化技术被认为是缓解当前能源危机和环境问题的有效策略,对实现碳中和具有重要意义。其中,电催化CO2还原反应(CO2RR)和N2还原反应(N2RR)是一种有前途的小分子转化策略。然而,CO2和N2均为线性分子,其中C=O和N≡N键的高解离能导致了它们高的化学惰性。此外,最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)之间的巨大能量间隙使它们具有高的化学稳定性;且CO2和N2的低质子亲和力使它们难以被直接质子化。另一方面,由于CO2RR和N2RR与析氢反应(HER)具有相近的氧化还原电位,造成其与HER之间存在竞争性关系,这也是致使催化剂在CO2RR和N2RR转化效率低的重要影响因素。因此,CO2RR和N2RR仍然面临着过电位高及法拉第效率低等问题。为了克服这些瓶颈,人们为提升CO2RR和N2RR电催化剂性能做出了很多努力。众所周知,电催化过程发生在催化剂表面,主要涉及质量传递和电子转移等过程。由此可见,催化剂的性能与其质量和电子传输能力密切相关,而调控催化剂表面结构可以优化活性点的质量和电子转移行为。电催化剂的缺陷和界面工程可通过表面原子工程来实现电子结构调控,对于提高气体吸附能力、抑制HER、富集气体及稳定中间产物等具有重要意义。到目前为止,所报道的各种缺陷和复合电催化剂在提高CO2RR和N2RR催化性能等方面均表现出巨大的潜力。在此,我们综述了CO2RR和N2RR中催化剂缺陷工程及界面工程的最新进展;首先讨论了四种不同的缺陷(空位、高指数晶面、晶格应变和晶格无序)对CO2RR和N2RR性能的影响;然后,总结了界面工程在聚合物-无机复合材料催化剂中的重要作用,并给出了典型实例;最后,展望了原子级电催化剂工程的发展前景,提出了开发和设计高效CO2RR和N2RR电催化剂的未来发展方向。  相似文献   

14.
Nowadays, more than 85% of the energy is generated by fossil fuels. The excessive utilization of finite fossil fuels has resulted in the crises of energy shortage and global warming caused by greenhouse gas emissions. Researchers have conceived several means for trying to solve these problems, among which the sunlight-driven CO2 reduction is viewed as a sustainable process that utilizes CO2 as the raw material to produce chemical fuels, including CO, formate, and CH4; this method not only realizes the conversion and storage of intermittent solar energy, but also decreases the CO2 concentration in the atmosphere and alleviates global warming. However, photochemical CO2 reduction usually undergoes a sluggish process due to the inertness of CO2. Moreover, the selectivity of the CO2 reduction reaction is also challenged by the hydrogen evolution reaction, which exhibits faster reaction kinetics. In this context, the rational design and synthesis of efficient and selective catalysts for photochemical CO2 reduction are major challenges.  相似文献   

15.
Benefiting from unique excellent physical and chemical characteristics, graphene has attracted widespread attention in the application of electrocatalysis. As a promising candidate, graphene is usually regulated with surface defects, heteroatoms, metal atoms and other active materials through covalent or non‐covalent bonds to substitute for noble metal catalysts, which has not been targeted in a report yet. In this review, we summarize the recent advances of approaches for engineering graphene‐based electrocatalysts and emphasize the corresponding electrocatalytic active sites in various electrocatalysis circumstances, such as electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), etc. The opportunities and challenges in the future development of graphene‐based catalysts are also discussed.  相似文献   

16.
本文以氧化石墨烯包覆泡沫镍电极(GO@NF)作为基底,采用水热法在GO@NF基底上原位生长CoO纳米花,同时GO在水热过程中被同步热还原为还原氧化石墨烯(RGO),从而一步制得还原氧化石墨烯包覆泡沫镍负载CoO纳米花电极(CoO/RGO@NF)。使用XRD和SEM对CoO/RGO@NF电极进行表征,发现CoO纳米花均匀生长在泡沫镍三维网络结构上,CoO纳米花为大量针状纳米棒围绕一个中心而成的花状结构,纳米棒的长度约为10 ~ 15 μm,直径约为100 ~ 200 nm。使用循环伏安和线性扫描法测试了CoO/RGO@NF电极电催化CO2的还原性能,在-0.76 V(vs. SHE)电位下,CoO/RGO@NF电极电催化CO2还原的电流效率达到70.9%,产甲酸法拉第效率达到65.2%,甲酸产率为59.8 μmol·h-1·cm-2,且电极可持续稳定电催化还原CO2 4 h,表明CoO/RGO@NF电极对CO2电还原有着优良的催化活性、选择性和稳定性。  相似文献   

17.
周睿  韩娜  李彦光 《电化学》2019,25(4):445-454
二氧化碳(CO2)作为一种经济、安全、可再生的碳资源化合物,其高效回收利用一直是全社会关注的焦点. 利用电化学方法,将CO2还原转化生成一系列高附加值的化学品或燃料,对于缓解能源与环境双重压力具有重要的现实意义. 本论文介绍了电化学CO2还原反应的基本原理与过程,综述了近年来铋基催化材料的发展现状,重点对这类催化材料的制备合成、结构调控、催化反应机理研究等方面进行了总结,最后对其未来发展方向进行了探讨与展望.  相似文献   

18.
双原子位点M-N-C催化剂是催化CO2还原反应(CO2RR)性能最佳的催化剂之一. 然而, 目前的研究主要集中于M-N-C活性中心原子类型的调控, 低估了活性位点的配位模式及分布对其催化性能的影响. 本文选取典型的双原子位点M-N-C催化剂(NiFe-N-C)为研究对象, 采用密度泛函理论方法探究了9种活性位点具有不同配位环境的NiFe-N-C催化剂电催化CO2RR的反应机理. 结果表明, 随着金属原子配位数、 双原子位点间距离的增加, M-N-C催化剂的稳定性、 催化CO2还原至CO的活性及抑制氢析出反应的选择性均呈现先升高后下降的趋势. 其中, 金属原子四配位且对称分布的NiFe-N-C-model 3催化剂, 因其双原子位点的强相互作用表现出最优的催化性能.  相似文献   

19.
电催化还原二氧化碳制备甲酸是备受关注的热点问题。而电极材料是决定还原效率的重要因素。本文通过电沉积方法在泡沫铜上直接制备纳米结构硫化亚铜薄膜,并采用扫描电镜(SEM)、X射线衍射(XRD)对其结构性能进行了系统研究。以硫化亚铜作为阴极电催化材料、0.5 mol·L-1 1-丁基-3-甲基咪唑四氟硼酸盐的乙腈溶液为电解液,在该体系中可高效催化转化二氧化碳为甲酸。结果表明,这一电解体系可有效实现电化学反应,甲酸的法拉第效率(FEHCOOH)可以达到85%,同时甲酸还原电流密度可达到5.3 mA·cm-2。  相似文献   

20.
Artificial photosynthesis is an ideal method for solar-to-chemical energy conversion, wherein solar energy is stored in the form of chemical bonds of solar fuels. In particular, the photocatalytic reduction of CO2 has attracted considerable attention due to its dual benefits of fossil fuel production and CO2 pollution reduction. However, CO2 is a comparatively stable molecule and its photoreduction is thermodynamically and kinetically challenging. Thus, the photocatalytic efficiency of CO2 reduction is far below the level of industrial applications. Therefore, development of low-cost cocatalysts is crucial for significantly decreasing the activation energy of CO2 to achieving efficient photocatalytic CO2 reduction. Herein, we have reported the use of a Ni2P material that can serve as a robust cocatalyst by cooperating with a photosensitizer for the photoconversion of CO2. An effective strategy for engineering Ni2P in an ultrathin layered structure has been proposed to improve the CO2 adsorption capability and decrease the CO2 activation energy, resulting in efficient CO2 reduction. A series of physicochemical characterizations including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM) were used to demonstrate the successful preparation of ultrathin Ni2P nanosheets. The XRD and XPS results confirm the successful synthesis of Ni2P from Ni(OH)2 by a low temperature phosphidation process. According to the TEM images, the prepared Ni2P nanosheets exhibit a 2D and near-transparent sheet-like structure, suggesting their ultrathin thickness. The AFM images further demonstrated this result and also showed that the height of the Ni2P nanosheets is ca 1.5 nm. The photoluminescence (PL) spectroscopy results revealed that the Ni2P material could efficiently promote the separation of the photogenerated electrons and holes in [Ru(bpy)3]Cl2·6H2O. More importantly, the Ni2P nanosheets could more efficiently promote the charge transfer and charge separation rate of [Ru(bpy)3]Cl2·6H2O compared with the Ni2P particles. In addition, the electrochemical experiments revealed that the Ni2P nanosheets, with their high active surface area and charge conductivity, can provide more active centers for CO2 conversion and accelerate the interfacial reaction dynamics. These results strongly suggest that the Ni2P nanosheets are a promising material for photocatalytic CO2 reduction, and can achieve a CO generation rate of 64.8 μmol·h-1, which is 4.4 times higher than that of the Ni2P particles. In addition, the XRD and XPS measurements of the used Ni2P nanosheets after the six cycles of the photocatalytic CO2 reduction reaction demonstrated their high stability. Overall, this study offers a new function for the 2D transition-metal phosphide catalysts in photocatalytic CO2 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号