首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The crystallization process of poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA)and PEO/poly(vinyl acetate) (PVAc) blends has been characterized by Fourier Transform Infrared(FTIR) spectra in conjunction with Differential Scanning Calorimeter (DSC) measurements. Thecrystallinity of PEO varies consistently with PEO content in PEO/PVAc blends and the PEO/PMMAblends containing 50 wt% or less PMMA. For the PEO/PMMA blends containing 60 wt% ormore PMMA, the crystallinity of PEO decreases more than PEO content but develops with crystal-lization time. These results can be explained in terms of difference between the crystallization tem-perature (T_c) and glass transition temperature (T_g) of the blends as a function of content of amorphouscomponent.  相似文献   

2.
STUDY ON THE BLENDS OF NYLON 66 AND LIQUID CRYSTALLINE POLYESTERS   总被引:1,自引:0,他引:1  
Blends of polyamide (Nylon 66) with two different kinds of liquid crystalline polyesters were studied in all the composition range. Homogeneous samples were obtained by coprccipitation from 2 wt%. solution of blends. The thermal properties, crystallinity and morphology of these blends were studied by using DSC, polarizing microscopy, and scanning electron microscopy. The phase transition and morphology of the blends are markedly-influenced by the composition of liquid crystalline polyesters. The mechanical behaviour of PHB/HNA-Nylon 66 blend was improved. although polyamidc (Nylon 66)with the liquid crystalline polyesters were incompatible, but a rather strong interaction between the polymers did exist.  相似文献   

3.
Experimental miscibility studies were performed on different compositions of iPP/sPP blends, where sPP has a low syndiotacticity ([rrrr] = 81%). Combining optical microscopy, rheology, and solid state NMR spectroscopy, the miscibility of the blends was investigated at different scales in the traditionally thought to be "immiscible" iPP/sPP blends. For the composition of iPP/sPP (90/10) blend, it shows to be miscible in the melt, and furthermore, the existence of intermolecular chain interactions between sPP and iPP components was detected in the solid state.  相似文献   

4.
Melt blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate (PVAc) were prepared andstudied by Torsional Pendulum Analysis (TPA) and Fourier Transform Infrared (FTIR). Two glasstransitions were found in these blends. The lower T_g corresponds to the segmental motion in thepure PEO. The dependence of the position and broadness of the higher T_g on composition of theblends indicates that the two components are compatible in the amorphous phase with micro-hetero-geneity. These T_g values observed from mixed PVAc/PEO phase are much higher than that calculatedfrom Fox equation. The comparison of the blends quenched and annealed from melt implies thatPVAc mixed with PEO at the segmental level on molten state and the deviation of T_g values fromFox equation could be due to variation of the blend's composition by crystallization of part of thePEO component. Further indication that the blends are compatible down to the level of chain segments and thatthere are specific interactions between PVAc and PEO molecules comes from the analysis of FTIRspectra of the blends and the solution of PVA in diethylene glycol dimethyl ether.  相似文献   

5.
The conformational and dynamic properties of polypropylene (PP) for both pure melts and blends with different chain tacticity were investigated by Monte Carlo simulation of isotactic (iPP), atactic (aPP) and syndiotactic (sPP) polypropylenes. The simulation of coarse-grained PP models was performed on a high coordination lattice incorporating short- and long-range intramolecular interactions from the rotational isomeric state (RIS) model and Lennard-Jones (LJ) potential function of propane pairs, respectively. The dynamics of chains in binary PP/PP mixture were investigated with the composition of C150H302 with different chain taciticity. The diffusion rates of PP with different stereochemistry are generally in the order as: iPP 〉 aPP 〉〉 sPP. For PP/PP blends with 50:50 wt% binary mixtures, immiscibility was observed when sPP was introduced into the mixtures. The diffusion rate of iPP and aPP became slower after mixing, while sPP diffuses significantly faster in the binary mixtures. The mobility of PP chains depends on both intramolecular (molecular size and chain stiffness) and intermolecular (chain packing) interactions. The effect of intramolecular contribution is greater than that of intermolecular contribution for iPP and aPP chains in binary mixtures. For sPP chain, intermolecular interaction has greater influence on the dynamics than intramolecular contribution.  相似文献   

6.
孙平川 《高分子科学》2012,30(6):900-915
Glass transition behavior of hydrogen bonded polymer blends of poly(vinyl phenol)(PVPh) and poly(ethylene oxide)(PEO) is systematically investigated using normal differential scanning calorimetry(DSC) and recently developed multifrequency temperature-modulated DSC(TOPEM),in combination with Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(NMR) techniques,focusing on the effect of the PEO molecular weight on the spatial and dynamic heterogeneity.It is found,for the first time,that both the glass transition temperature(T_g) and activity energy(E_a) of the blends strongly depend on PEO molecular weight,and a common turning point,which separates the rapid and slow increasing regions,can be found.The interchain hydrogen bonding interactions,both determined by FTIR measurements and obtained from the Kwei equation,decrease with increasing PEO molecular weight,indicating a decrease of the componential miscibility.A series of parameters related to the microscopic spatial and dynamic heterogeneity,such as the activity energy, fragility,nonexponential factor and the size of cooperatively rearranging regions,are calculated from frequency dependency complex heat capacity measured using TOPEM.It is found that each of these parameters monotonically changes with increasing the PEO molecular weight during the glass transition process,demonstrating that hydrogen bonding interaction is the key factor in controlling the spatial and dynamic heterogeneity,thus the glass transition.NMR relaxation results reveal the existence of obvious phase separation large than 5 nm,implying that the cooperatively rearranging regions should be closely related to the interphase region between the two components.The above obtained origin and evolution of spatial and dynamic heterogeneity provide a new insight into the glass transition behavior of polymer blends.  相似文献   

7.
Dielectric relaxation spectroscopy(DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases. The activation energy of the α process, which corresponds to the dynamic glass transition, increases upon drawing. The enlarged gap between the activation energies of the α process and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes. At low drawing ratios the a process connects with the β process, while at the highest drawing ratio in our measurements, the a process is continuous with the αprocess. This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing. As the draw ratio increases, the α relaxation broadens and decreases its intensity, indicating an increasing heterogeneity. We observed slope changes in the α traces, when the temperature decreases below that at which τα≈ 1 s. This may indicate the glass transition from the ‘rubbery' state to the non-equilibrium glassy state.  相似文献   

8.
CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on micro- structures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature.  相似文献   

9.
闫寿科 《高分子科学》2015,33(3):386-394
Phase structure and crystallization behavior of polyethylene(PE) in its blends with cis-1,4-butadiene rubber(BR) at different blend ratios and sample preparation conditions were studied. The PE is finely dispersed in the BR matrix. For samples hot pressed at 145 °C, circular PE microdomains with randomly oriented PE lamellar aggregates were produced. The domain size and number increase with increasing PE content. When the PE content is over 10 wt%, most of the PE domains impinged each other. The separated PE domains are connected by PE stripes with parallel arranged lamellar aggregates. For samples hot pressed at 140 °C, elongated PE microdomains with oriented PE lamellar aggregates were obtained due to the shear flow. The crystallization of PE in the blends depends on the phase structure. Confined crystallization of PE occurs in small microdomains at relatively low temperature. With the increase of domain size, the crystallization ability of PE increases while the confined crystallization decreases.  相似文献   

10.
series of chitosan samlpes with 91% deacetylation but different molecular weight were obtained by varying the time of chitosan solution in acetic acid aqueous solution at 70℃.The viscosities and flow behavior of the concentrated solutions of chitosan were investigated in 10% (vol%) formic acid aqueous solution after the solutions were prepared for two days by using RPX-705 Rheopexy Analyzer.For each chitosan sample,at the concentration of 3.5 g/100ml,the log (ηr/η0)versus lgγη0,M curves superimpose each other within the same rheogramme. Then the relationship between log nr and lgM was studied under different shear rates.For the highest M sample, the experimental data deviate from the straight lines greatly. This was because the chitosan chain degradated in acid solution during dissolving. The molecular weights were measured in acid solution after two days of dissolving, they were right on their own straight lines. However,no obvious degradation was observed after two days in the same solution for the other lower M chitosan sam-ples. In addition, the plot of nr against M was not a straight line,probaly due to particular interaction of chitosan.  相似文献   

11.
锐钛矿型TiO2水溶胶的低温制备及其表征   总被引:7,自引:0,他引:7  
Anatase titanium dioxide hydrosol was prepared at low temperature by a simple method. The title material was characterized by TEM, XRD, FTIR and BET, respectively. The photocatalytic activity of the as-prepared TiO2 was evaluated by the degradation of methyl orange solution under sunlight and the photocatalytic oxidation of acetone in air. The results showed that the titanium dioxide hydrosol was composed of anatase phase with average grain size of about 7 nm, and the crystallinity became more perfect with the increase of temperature. The BET surface areas were more than 220 m2·g-1 for these samples. It is found that the photocatalytic activity was much better for the higher heat processing temperature. Especially, the photocatalytic activity of the sample with a heat treatment of 110 ℃ was better than that of P25. In addition, TiO2 hydrosol also possessed good photocatalytic activity under the sunlight illumination.  相似文献   

12.
A series of PCL/MDI/BDO segmented polyurethanes have been synthesized by two-step method in solution.The hard segment content ranges from 10% to 48% by weight, and the molecular weight of PCL diols is 1500. Hard segment spherulites have been observed in compression molded specimens of all of the samples except the one of the lowest hard segment content. The difficulty in sphernlite formation was explained as only in a small temperature range,the microphase separation rate may be faster than the crystallization rate and all these processes are very slow due to the hydrogen bonding between hard and soft segments and the interactions between hard segments themselves. PCL soft segments of molecular weight 1500 is still crystallizable and may form different crystalline superstructures.  相似文献   

13.
A sample containing different regions with poly(ε-caprolactone)(PCL), oriented polyethylene (PE), and oriented isotactic polypropylene (iPP) films in contact with glass slide has been prepared to be observed in the same view field in an optical microscope and the crystallization of PCL in different regions during cooling from 80 °C down to room temperature at a rate of 1 °C·min^-1 was studied. The results showed that the crystallization of PCL started first at the PE surface and then at the iPP surface, while its bulk crystallization occured much later. This indicates that though both PE and iPP are active in nucleating PCL, the nucleation ability of PE is stronger than that of iPP. This was due to a better lattice matching between PCL and PE than that between PCL and iPP. Moreover, since lattice matching existed between every (hk0) lattice planes of both PCL and PE but only between the (100)PCL and (010)iPP lattice planes, the uniaxial orientation feature of the used PE and iPP films resulted in the existence of much more active nucleation sites of PCL on PE than on iPP. This led to the fact that the nucleation density of PCL at PE surface was so high that the crystallization of PCL at PE surface took place in a way like the film developing process with PCL microcrystallites happened everywhere with crystallization proceeding simultaneously. On the other hand, even though iPP also enhanced the nucleation density of PCL evidently, the crystallization of PCL at iPP surface included still a nucleation and crystal growth processes similar to that of its bulk crystallization.  相似文献   

14.
冯玉红  张若愚 《高分子科学》2014,32(8):1099-1110
Polylactide (PLA) was successfully toughened by blending with bio-based poly(ester)urethane (TPU) elastomers which contained bio-based polyester soft segments synthesized from biomass diols and diacids. The miscibility, mechanical properties, phase morphology and toughening mechanism of the blend were investigated. Both DSC and DMTA results manifested that the addition of TPU elastomer not only accelerated the crystallization rate, but also increased the final degree of crystallinity, which proved that TPU has limited miscibility with PLA and has functioned as a plasticizer. All the blend samples showed distinct phase separation phenomenon with sea-island structure under SEM observation and the rubber particle size in the PLA matrix increased with the increased contents of TPU. The mechanical property variation of PLA/TPU blends could be quantitatively explained by Wu's model. With the variation of TPU, a brittle-ductile transition has been observed for the TPU/PLA blends. When these blends were under tensile stress conditions, the TPU particles could be debonded from the PLA matrix and the blends showed a high ability to induce large area plastic deformation before break, which was important for the dissipation of the breaking energy. Such mechanism was demonstrated by tensile tests and scanning electron microcopy (SEM) observations.  相似文献   

15.
By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-comaleic anhydride)(PMMA/SMA) blends presenting a typical lower critical solution temperature(LCST) behavior. The meltmixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point(Tc) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation(lower Tc) is not necessarily equivalent to faster kinetics(decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength(Λm) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics(decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.  相似文献   

16.
The blend film of silk fibroin (SF) and poly(ethylene glycol)400 (PEG400) with a blend ratio of 2/1 (wt/wt) wasprepared simply by dropping a little PEG400 into the SF solution and then casting the mixed aqueous solution at 50℃. Theresulting film exhibited much better mechanical properties in the dry and wet state than SF itself, owing to theconformational change of SF in the blends from the random coil to the β-sheet structure and intermolecular hydrogen bondformation between SF and PEG400. Thermogravimetric analysis showed that the initial thermal decomposition temperatureof the blend film was 170℃, which was 80℃ lower than that of SF (250℃) and 20℃ higher than that of PEG400 (150℃),and indicated a Strong interaction between two components of the blend. No crystalline peaks were observed in the X-raydiffraction curve of the blend film. Cell culture test showed that SF/PEG400 was a suitable substrate for the growth of humanumbilical vein endothelial cells (HUVEC).  相似文献   

17.
Two octaisobutyl-polyhedral oligomeric silsesquioxanes(oib-POSS)reinforced biodegradable poly(ε-caprolactone)(PCL)composites were prepared via two different methods,i.e.,melt compounding and solution casting,which were named as m PCL/oib-POSS and s PCL/oibPOSS,respectively,in this work.Oib-POSS dispersed finely in both composites;moreover,oib-POSS aggregates were larger in m PCL/oib-POSS than in s PCL/oib-POSS.Despite the different preparation methods,oib-POSS obviously promoted the crystallization of PCL,especially in s PCL/oib-POSS,but did not modify the crystal structure of PCL.The storage moduli of PCL were improved significantly in both composites.PCL/oib-POSS composites with enhanced crystallization behavior and improved dynamic mechanical properties were successfully prepared through both methods;moreover,the solution casting method was more effective than the melt compounding method.  相似文献   

18.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

19.
The crystallization behavior of polyamide 6,6(PA66) under complex flow field is of great importance for its final mechanical properties.Poly(vinyl pyrrolidone)(PVP) was applied as crystallization modifying agency to improve processability of PA66. The regulation nature on hydrogen bonds(H-bonds) interaction of PVP was studied upon cooling process. As revealed by in situ FTIR, the sample with 5 wt% PVP displays decreased enthalpy change(ΔH) for both the generation of H-bonds and the transition of...  相似文献   

20.
The imaging mass spectrometry(IMS) technology has experienced a rapid development in recent years.A new IMS technology which is based on air flow assisted ionization(AFAI) was reported.It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity.The AFAI in DESI mode was used as the ion source in this paper.The new IMS method is named AFADESI-IMS.The adoption of assisted air flow makes the sample pretreatment easy and convenient.An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system.For data processing,a program based on MATLAB with the function of numerical analysis was developed.A theoretical imaging resolution of a few hundred microns can be achieved.The composite AFAI-IMS images of different target analytes were imaged with high sensitivity.A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement.The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage.The method has enormous potentials in the MS imaging of large and complicated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号