首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Quantitative analyses of fatty acids from five triacylglycerol products, coconut oil, palm kernel oil, palm oil, lard and cocoa butter, were carried out using two analytical methods: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and gas chromatography (GC), in an effort to validate the application of MALDI-TOFMS in quantitative fatty acid analysis. For the GC analysis, transmethylated products were used, whereas, for the MALDI-TOF analysis, saponified products were used. Under MALDI-TOF conditions, the acids were detected as sodiated sodium carboxylates [RCOONa + Na](+) consistent with the mode of ionization that was previously reported. Thus, the MALDI-TOF mass spectrum of saponified coconut oil showed the presence of sodiated sodium salts of caprylic acid (7.5 +/- 0.67, m/z 189), capric acid (6.9 +/- 0.83, m/z 217), lauric acid (47.8 +/- 0.67, m/z 245), myristic acid (20.4 +/- 0.51, m/z 273), palmitic acid (9.8 +/- 0.47, m/z 301), linoleic acid (0.9 +/- 0.07, m/z 325), oleic acid (4.8 +/- 0.42, m/z 327) and stearic acid (2.0 +/- 0.13, m/z 329). Saponified palm kernel oil had a fatty acid profile that included caprylic acid (3.5 +/- 0.59), capric acid (4.7 +/- 0.82), lauric acid (58.6 +/- 2.3), myristic acid (20.9 +/- 1.5), palmitic acid (7.2 +/- 1.1), oleic acid (3.8 +/- 0.62) and stearic acid (1.2 +/- 0.15). Saponified palm oil gave myristic acid (0.83 +/- 0.18), palmitic acid (55.8 +/- 1.7), linoleic acid (4.2 +/- 0.51), oleic acid (34.5 +/- 1.5), stearic acid (3.8 +/- 0.26) and arachidic acid (0.80 +/- 0.22). Saponified lard showed the presence of myristic acid (1.5 +/- 0.24), palmitic acid (28.9 +/- 1.3), linoleic acid (13.7 +/- 0.67), oleic acid (38.7 +/- 1.4), stearic acid (12.8 +/- 0.64) and arachidic acid (2.4 +/- 0.35). Finally, for saponified cocoa butter, the fatty acid distribution was: palmitic acid (32.3 +/- 1.0), linoleic acid (2.6 +/- 0.35), oleic acid (34.9 +/- 1.7) and stearic acid (30.3 +/- 1.6). Quantitative gas chromatographic analysis of the corresponding methyl esters from these triacylglycerol products yielded data that were mostly in agreement with the MALDI-TOFMS data. The MALDI-TOF experiment, however, proved to be superior to the GC experiment, particularly with regard to baseline resolution of unsaturated acids. Furthermore, the ability of MALDI-TOFMS to detect low concentrations of fatty acids rendered it more sensitive than the GC methodology.  相似文献   

2.
The development of a two phase hollow fiber liquid-phase microextraction technique, followed by gas-chromatography-flame ionization detection (GC-FID) for the profiling of the fatty acids (FAs) (lauric, myristic, palmitic, stearic, palmitoleic, oleic, linoleic, linolenic and arachidic) in vegetable oils is described. Heptadecanoic acid methyl ester was used as the internal standard. The FAs were transesterified to their corresponding methyl esters prior to the extraction. Extraction parameters such as type of extracting solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Recommended conditions were extraction solvent, n-tridecane; extraction time, 35 min; extraction temperature, ambient; without addition of salt. Enrichment factors varying from 37 to 115 were achieved. Calibration curves for the nine FAs were well correlated (r(2)>0.994) within the range of 10-5000 μg L(-1). The limit of detection (signal:noise, 3) was 4.73-13.21 ng L(-1). The method was successfully applied to the profiling of the FAs in palm oils (crude, olein, kernel, and carotino cooking oil) and other vegetable oils (soybean, olive, coconut, rice bran and pumpkin). The encouraging enrichments achieved offer an interesting option for the profiling of the minor and major FAs in palm and other vegetable oils.  相似文献   

3.
The fruit oils of Athamanta turbith ssp. hungarica and Athamanta turbith ssp. haynaldii were obtained by Soxhlet extraction using petroleum ether. The fatty acid composition of oils was determined by GC in the methyl ester form. Considering the composition and content of fatty acids, the examined oils were very similar. Petroselinic acid was the principal one (45.6 and 46.2%, respectively), followed by a significant amount of linoleic acid (26.9 and 29.1%, respectively). In both oils, myristic, pentadecanoic, palmitic, palmitoleic, stearic, petroselinic, oleic, linoleic, α-linolenic, arachidic, and behenic acid were identified. Lignoceric acid was detected only in A. turbith ssp. hungarica oil. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 319–320, July–August, 2006.  相似文献   

4.
The digestion rates of microalgal (docosahexaenoic acid, DHA, 56.8%; palmitic acid, 22.4%), fish (DHA, 10.8%; eicosapentaenoic acid, EPA, 16.2%), and soybean oils (oleic, 21.7%; linoleic acid, 54.6%) were compared by coupling the in vitro multi-step and in vivo apparent digestion models using mice. The in vitro digestion rate estimated based on the released free fatty acids content was remarkably higher in soybean and fish oils than in microalgal oil in 30 min; however, microalgal and fish oils had similar digestion rates at longer digestion. The in vivo digestibility of microalgal oil (91.49%) was lower than those of soybean (96.50%) and fish oils (96.99%). Among the constituent fatty acids of the diet oils, docosapentaenoic acid (DPA) exhibited the highest digestibility, followed by EPA, DHA, palmitoleic, oleic, palmitic, and stearic acid, demonstrating increased digestibility with reduced chain length and increased unsaturation degree of fatty acid. The diet oils affected the deposition of fatty acids in mouse tissues, and DHA concentrations were high in epididymal fat, liver, and brain of mice fed microalgal oil. In the present study, microalgal oil showed lower in vitro and in vivo digestibility, despite adequate DHA incorporation into major mouse organs, such as the brain and liver.  相似文献   

5.
Partial least squares modeling and gas-chromatographic fatty-acid fingerprints are reported as a method for the simultaneous determination of cottonseed, olive, soybean and sunflower edible oil mixtures. In this work, two sets of three- and four-component combinations of oils were prepared, hydrolyzed and the obtained free fatty acids analyzed by gas chromatography (GC) without any further derivatization. The normalized percentages of the myristic (14:0), palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic (18:3) acids were chromatographically measured in samples and used for constructing calibration matrix. The cross-validation method was used to select the number of factors and the proposed methods were validated by using two sets of synthetic oil mixture samples. The relative standard error for each oil in mixture samples was less than 10%. This approach allows determining possible adulteration in each of the four edible oils.  相似文献   

6.
比较峰面积归一化法与标准曲线法两种方法分析植物油中脂肪酸百分比含量的差异.利用气相色谱-质谱联用仪(GC-MS)检测10种市售食用植物油中的8种主要脂肪酸,峰面积归一化法和标准曲线法计算脂肪酸的百分比含量.结果表明,标准曲线法与峰面积归一化法相比,肉豆蔻酸、棕榈酸、十七烷酸、硬脂酸和棕榈油酸所占的百分比升高,而油酸、亚...  相似文献   

7.
邱若风  黄忠平  王丽丽 《色谱》2018,36(9):925-930
建立了分析棉籽仁中脂肪酸组成的在线热辅助甲基化-气相色谱法。将0.3 mg棉籽仁样品与2 μ L三甲基氢氧化硫(0.2 mol/L)加入裂解器,在350℃下进行甲基化反应,通过气相色谱仪进行分离分析,共检测到8种脂肪酸甲酯成分,分别为亚油酸(C18:2)、油酸(C18:1)、棕榈酸(C16:0)、硬脂酸(C18:0)、肉豆蔻酸(C14:0)、棕榈油酸(C16:1)、花生酸(C20:0)和二十二酸(C22:0),不饱和脂肪酸的相对含量为66.30%~72.54%,其中亚油酸的相对含量为43.20%~53.61%,相对峰面积的相对标准偏差(RSD)小于10%(n=5)。通过分析5组棉籽仁样品与3种食用油中的脂肪酸组成,结果表明不同产地的棉籽仁中的脂肪酸组成差异不明显,且棉籽仁中的脂肪酸组成与玉米油最为接近,相似度为0.960~0.992。该方法简单、快速、准确,适合分析棉籽仁中的脂肪酸组成。  相似文献   

8.
A novel fluorescent derivatization reagent for carboxylic acids, 6-oxy-(acetyl ethylenediamine) fluorescein (AEF), was well designed, synthesized, and applied to HPLC. The derivatization reaction with 12 fatty acids, including n-valeric acid (C5), n-hexanoic acid (C6), n-heptanoic acid (C7), n-octanoic acid (C8), n-nonanoic acid (C9), n-decanoic acid (C10), lauric acid (C12), myristic acid (C14), palmitic acid (C16), stearic acid (C18), oleic acid (C18:1), and linoleic acid (C18:2), was completed at 55 degrees C within 40 min. The derivatives of fatty acids were separated on a C18 RP column and detected by fluorescence detection. The LODs attained were 0.4-1.2 nM (S/N of 3). It has been demonstrated that AEF is a prominent derivatization reagent for carboxylic acids which is suitable for HPLC.  相似文献   

9.
杏仁油的物化性能及其脂肪酸组成的分析   总被引:16,自引:0,他引:16  
师梓文  付其仲  陈邦杰  徐淑英 《色谱》1999,17(5):506-507
用3种不同溶剂萃取杏仁得到杏仁油,并对其物化常数进行测定。杏仁油用饱和氢氧化钾 甲醇皂化,再用甲醇 硫酸(体积比为4∶1)甲酯化后,将乙醚萃取液作气相色谱分析。太原杏仁油中脂肪酸的主要成分为油酸(C18∶1,质量分数约68%)和亚油酸(C18∶2,质量分数约25%),少量棕榈酸(C16∶0)、棕榈烯酸(C16∶1)和硬脂酸(C18∶0),微量花生酸(C20∶0)。  相似文献   

10.
The seed of Ziziphus jujube Mill. var. spinosa (Bunge) Hu ex H. F. Chou, Suanzaoren in Chinese, is one of commonly used Chinese medicines. Saponins and fatty oil contains several fatty acids in Suanzaoren are responsible for its therapeutic activities. In this study, a new HPLC coupled with evaporative light scattering detection (ELSD) and pressurized liquid extraction (PLE) method was developed for the simultaneous quantitative determination of 11 major components of 2 saponins and 9 fatty acids, namely jujuboside A, jujuboside B, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, arachidic acid and docosanoic acid in Suanzaoren. Simultaneous separation of these eleven compounds was achieved on a C18 analytical column. The mobile phase consisted of (A) 0.1% aqueous acetic acid and (B) methanol with 0.1% acetic acid using a gradient elution. The drift tube temperature of ELSD was set at 75 degrees C, and nitrogen flow-rate was 1.8l/min. All calibration curves showed good linearity (r(2)>0.9955) within test ranges. This method showed good reproducibility for the quantification of these eleven components in Suanzaoren with intra- and inter-day variations of less than 3.41 and 4.37%, respectively. The validated method was successfully applied to quantify 11 investigated components in nine commercial samples of Suanzaoren.  相似文献   

11.
This paper describes a quantitative analytical procedure to determine the fatty acid composition in drying oils like linseed, walnut and poppy seed. The procedure required the enzymatic hydrolysis of the oil triacylglycerol families by the action of Candida rugosa lipase. The fatty acids (FFAs) produced (linolenic, myristic, linoleic, palmitic, oleic and stearic) were extracted with n-heptane and derivatized with α-bromoacetophenone. Their separation and quantitative determination were performed by high-performance liquid chromatography employing a C18 column and an isocratic elution method coupled to ultraviolet detection. The analytical enzymatic procedure is sensitive for < 0.5 μg/mL of FFAs in a reduced sample of 0.1 mg of drying oil.  相似文献   

12.
Using reversed-phase HPLC with refractometric detection, we determined the composition of triacylglycerols (TAGs) of manketti oil and calculated its fatty acid composition. It was shown that the oil consists of octadecatrienoic (34.6 ± 0.8 mol %), linoleic (35.4 ± 0.8 mol %), oleic (14.6 ± 0.4 mol %), palmitic (7.2 ± 0.3 mol %), and stearic acids. Using spectrophotometric detection, for the oils of centrathus and jacaranda seeds, it was demonstrated that octadecatrienoic acid is presented mainly by α-eleostearic acid and small impurities of β-eleostearic (2.8 mol %) and jacarandic (0.3 mol %) acids. The results of the quantitative determination of TAGs, obtained by refractometric detection (with corrections of the peak areas to the calculated values of the refractive indices of TAGs), are consistent with the data obtained using spectrophotometric detection.  相似文献   

13.
The kernel oils of Quercus robur and Quercus cerris were obtained by Soxhlet extraction using petroleum ether. Oil yields were found to be 5.2–5.6% and 4.3–4.8% for Q. robur and Q. cerris kernel, respectively (expressed in g per 100 g of dried plant material). The physical and chemical constants, unsaponifiable matter and total fatty acids were determined. The total fatty acid composition of oils was determined by GC in the methyl ester form. Considering the composition and content of fatty acids, the examined kernel oils were very similar. Seven fatty acid components were identified in both oils: palmitic, stearic, arachidic, palmitoleic, oleic, linoleic, and -linolenic. In Q. robur and Q. cerris kernel oils the principal acids were oleic (44.3% and 43.0%, respectively) and linoleic (37.2% and 32.6%, respectively), followed by a significant amount of palmitic acid.Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 347–348, September–October, 2004.  相似文献   

14.
15.
It has been shown by the methods of IR and1H and13C NMR spectroscopy and also by spectrometry that ether extracts a fat from the kernels of the fruit stones ofAnisophyllea laurina (familyRhizophoraceae, Guinea). The amount of fat is about 16% of the weight of the kernels. The acid composition of the fat has been studied by gas chromatography and mass spectrometry. It contains the following acids (%): myristic (traces), palmitoleic (26.1), palmitic (54.4), linoleic (5.5), oleic (10.1), vaccenic (3.1), and stearic (0.8).M. V. Lomonosov Moscow State University. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 645–647, September–October, 1984.  相似文献   

16.
A new fluorescein-based fluorescent derivatizating reagent, 6-oxy-(acetyl piperazine) fluorescein (APF), has been designed, synthesized and developed for carboxylic acid labeling. It was used as a pre-column derivatizing reagent for the determination of seven free fatty acids (lauric acid, myristic acid, arachidonic acid, linoleic acid, palmitic acid, oleic acid, and stearic acid) with high-performance liquid chromatography (HPLC). The derivatization reaction of APF with seven fatty acids was completed at 60 degrees C for 1 h using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as the condensing reagent. On a C18 column, the derivatives of APF with seven free fatty acids could be separated completely in 22 min using a mobile phase of methanol-water (88:12, v/v) containing 7 mmol L(-1) pH 6.5 Na2HPO4-H3Cit3 buffer with fluorescence detection at lambdaex/lambdaem=467/512 nm. The detection limits could reach 0.1-6.4 nmol L(-1) (signal-to-noise=3). This reagent was applied to the determination of the free fatty acids in human serum samples with satisfying recovery efficiencies varying from 93 to 105%.  相似文献   

17.
Human Milk is naturally the only source of food for infant in their early life. It contains 2-6% lipid which provides about 50% of the total energy needed by the infant. Human milk fat (HMF) mainly as TAG with the specific fatty acid composition, palmitic acid (C16:0) (20-25%), which is primary located at sn-2 of glycerol bonds (70%) and oleic acid (C18:1), located at sn-1,3 (35%). HMF also provide fatty acids such as linoleic acid, linolenic acid, EPA, DHA and lauric acid that are very important for infant. The purposes of this research are to synthesize of 1,3-dioleoyl-2-palmitoilglycerol (OPO) and to determine the best composition of OPO, VCO, soybean oil and fish oil for HMFS production for infant formula. Interesterification of tripalmitin and ethyl oleate using immobilized lipase from Rhizomucor miehei (Lipozym RM IM) were used to synthesize of OPO. Interesterification product of mixed VCO, soybean oil and fish oil that are source of lauric acid, linoleic acid, α-linolenic, EPA and DHA, were formulated in mass ratio (58:20:20:2) and (70:18:10:2) for obtaining HMFS which have fatty acids composition similar or close to HMF. Composition of fatty acids from product were analyzed by GCMS. From this research, were obtained HMFS containing palmitic acid as much as 28.89% where 84.49% of that are located at sn-2 while sn-1,3 position are dominated by oleic acid as much as 55.11% from the total 38.7% and 70:18:10:2 w/w is the best composition of interesterification product, VCO, soybean oil and fish oil to obtain HMFS similar to HMF.  相似文献   

18.
Positional distribution of fatty acyl chains of triacylglycerols (TGs) in vegetable oils and fats (palm oil, cocoa butter) and animal fats (beef, pork and chicken fats) was examined by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to atmospheric pressure chemical ionization using a quadrupole mass spectrometer. Quantification of regioisomers was achieved for TGs containing two different fatty acyl chains (palmitic (P), stearic (S), oleic (O), and/or linoleic (L)). For seven pairs of 'AAB/ABA'-type TGs, namely PPS/PSP, PPO/POP, SSO/SOS, POO/OPO, SOO/OSO, PPL/PLP and LLS/LSL, calibration curves were established on the basis of the difference in relative abundances of the fragment ions produced by preferred losses of the fatty acid from the 1/3-position compared to the 2-position. In practice the positional isomers AAB and ABA yield mass spectra showing a significant difference in relative abundance ratios of the ions AA(+) to AB(+). Statistical analysis of the validation data obtained from analysis of TG standards and spiked oils showed that, under repeatability conditions, least-squares regression can be used to establish calibration curves for all pairs. The regression models show linear behavior that allow the determination of the proportion of each regioisomer in an AAB/ABA pair, within a working range from 10 to 1000 microg/mL and a 95% confidence interval of +/-3% for three replicates.  相似文献   

19.
The fatty acid composition of the seed oil of 23 Stachys taxa was analysed by GC/MS. The main compounds were found to be linoleic (27.1-64.3%), oleic (20.25-48.1%), palmitic (4.3-9.1%), stearic (trace to 5.2%) and 6-octadecynoic (2.2-34.1%) acids. The latter compound could be used as a chemotaxonomic marker of the genus Stachys. A cluster analysis was performed for comparison and characterisation of the seed oil from Stachys species.  相似文献   

20.
A novel capillary electrophoresis methodology using UV indirect detection (224 nm) for the analysis of trans-fatty acids in hydrogenated oils was proposed. The electrolyte consisted of a pH 7 phosphate buffer at 15 mmol x L(-1) concentration containing 4 mmol.L(-1) sodium dodecylbenzenesulfonate, 10 mmol x L(-1) polyoxyethylene 23 lauryl ether (Brij 35), 2% 1-octanol and 45% acetonitrile. Under the optimized conditions, ten fatty acids, C12:0, C13:0 (internal standard), C14:0, C16:0, C18:0, C18:1c, C18:1t, C18:2cc, C18:2tt and C18:3ccc were baseline-separated in less than 12 min. The proposed methodology was applied to monitor the formation of trans-fatty acids during hydrogenation of Brazilnut oil. A crude oil sample (42.1% linoleic acid, 37.3% oleic acid, 13.4% palmitic acid, and 7.0% stearic acid) was mixed with 0.25% of a nickel-based catalyst and submitted to two independent hydrogenation conditions: 175 degrees C, 3 atm, 545 rpm for 60 min (GH(1) sample), and 150 degrees C, 1 atm, 545 rpm for 30 min (GH(2) sample). For the most severe hydrogenation condition (higher temperature and pressure, under longer reactional period), a more complete conversion of linoleic and oleic acids into stearic acid occurred with concomitant formation of the trans-species, elaidic acid (C18:1t). For the milder hydrogenation procedure that generated sample GH(2), larger amounts of linoleic and oleic acids remained, in addition to the transformations already observed in the GH(1) sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号