首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We consider the problem of approximating the unknown density \(u\in L^2(\Omega ,\lambda )\) of a measure \(\mu \) on \(\Omega \subset \mathbb {R}^n\) , absolutely continuous with respect to some given reference measure \(\lambda \) , only from the knowledge of finitely many moments of \(\mu \) . Given \(d\in \mathbb {N}\) and moments of order \(d\) , we provide a polynomial \(p_d\) which minimizes the mean square error \(\int (u-p)^2d\lambda \) over all polynomials \(p\) of degree at most \(d\) . If there is no additional requirement, \(p_d\) is obtained as solution of a linear system. In addition, if \(p_d\) is expressed in the basis of polynomials that are orthonormal with respect to \(\lambda \) , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover \(p_d\rightarrow u\) in \(L^2(\Omega ,\lambda )\) as \(d\rightarrow \infty \) . In general nonnegativity of \(p_d\) is not guaranteed even though \(u\) is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing \(p_d\ge 0\) that minimizes \(\int (u-p)^2d\lambda \) now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of solutions of nonlinear differential equations. In all cases our results are significantly better than those obtained with the maximum entropy technique for estimating \(u\) .  相似文献   

3.
We prove a lower semicontinuity result for polyconvex functionals of the Calculus of Variations along sequences of maps \(u:\Omega \subset \mathbb{R }^n\rightarrow \mathbb{R }^m\) in \(W^{1,m}\) , \(2\le m\le n\) , bounded in \(W^{1,m-1}\) and convergent in \(L^1\) under mild technical conditions but without any extra coercivity assumption on the integrand.  相似文献   

4.
We consider a class of weak solutions of the heat flow of biharmonic maps from \(\Omega \subset \mathbb{R }^n\) to the unit sphere \(\mathbb{S }^L\subset \mathbb{R }^{L+1}\) , that have small renormalized total energies locally at each interior point. For any such a weak solution, we prove the interior smoothness, and the properties of uniqueness, convexity of hessian energy, and unique limit at \(t=\infty \) . We verify that any weak solution \(u\) to the heat flow of biharmonic maps from \(\Omega \) to a compact Riemannian manifold \(N\) without boundary, with \(\nabla ^2 u\in L^q_tL^p_x\) for some \(p>\frac{n}{2}\) and \(q>2\) satisfying (1.12), has small renormalized total energy locally and hence enjoys both the interior smoothness and uniqueness property. Finally, if an initial data \(u_0\in W^{2,r}(\mathbb{R }^n, N)\) for some \(r>\frac{n}{2}\) , then we establish the local existence of heat flow of biharmonic maps \(u\) , with \(\nabla ^2 u\in L^q_tL^p_x\) for some \(p>\frac{n}{2}\) and \(q>2\) satisfying (1.12).  相似文献   

5.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

6.
By variational methods and Morse theory, we prove the existence of uncountably many \((\alpha ,\beta )\in \mathbb R ^2\) for which the equation \(-\mathrm{div}\, A(x, \nabla u)=\alpha u_+^{p-1} -\beta u_-^{p-1}\) in \(\Omega \) , has a sign changing solution under the Neumann boundary condition, where a map \(A\) from \(\overline{\Omega }\times \mathbb R ^N\) to \(\mathbb R ^N\) satisfying certain regularity conditions. As a special case, the above equation contains the \(p\) -Laplace equation. However, the operator \(A\) is not supposed to be \((p-1)\) -homogeneous in the second variable. In particular, it is shown that generally the Fu?ík spectrum of the operator \(-\mathrm{div}\, A(x, \nabla u)\) on \(W^{1,p}(\Omega )\) contains some open unbounded subset of \(\mathbb R ^2\) .  相似文献   

7.
For \(\Omega \) varying among open bounded sets in \(\mathbb R ^n\) , we consider shape functionals \(J (\Omega )\) defined as the infimum over a Sobolev space of an integral energy of the kind \(\int _\Omega [ f (\nabla u) + g (u) ]\) , under Dirichlet or Neumann conditions on \(\partial \Omega \) . Under fairly weak assumptions on the integrands \(f\) and \(g\) , we prove that, when a given domain \(\Omega \) is deformed into a one-parameter family of domains \(\Omega _\varepsilon \) through an initial velocity field \(V\in W ^ {1, \infty } (\mathbb R ^n, \mathbb R ^n)\) , the corresponding shape derivative of \(J\) at \(\Omega \) in the direction of \(V\) exists. Under some further regularity assumptions, we show that the shape derivative can be represented as a boundary integral depending linearly on the normal component of \(V\) on \(\partial \Omega \) . Our approach to obtain the shape derivative is new, and it is based on the joint use of Convex Analysis and Gamma-convergence techniques. It allows to deduce, as a companion result, optimality conditions in the form of conservation laws.  相似文献   

8.
A subgroup \(H\) of an Abelian group \(G\) is called fully inert if \((\phi H + H)/H\) is finite for every \(\phi \in \mathrm{End}(G)\) . Fully inert subgroups of free Abelian groups are characterized. It is proved that \(H\) is fully inert in the free group \(G\) if and only if it is commensurable with \(n G\) for some \(n \ge 0\) , that is, \((H + nG)/H\) and \((H + nG)/nG\) are both finite. From this fact we derive a more structural characterization of fully inert subgroups \(H\) of free groups \(G\) , in terms of the Ulm–Kaplansky invariants of \(G/H\) and the Hill–Megibben invariants of the exact sequence \(0 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 0\) .  相似文献   

9.
We establish a global Calderón–Zygmund theory for solutions to a large class of nonlinear parabolic systems whose model is the inhomogeneous parabolic \(p\) -Laplacian system $$\begin{aligned} \left\{ \begin{array}{ll} \partial _t u - {{\mathrm{div}}}(|Du|^{p-2}Du) = {{\mathrm{div}}}(|F|^{p-2}F) &{}\quad \hbox {in }\quad \Omega _T:=\Omega \times (0,T)\\ u=g &{}\quad \hbox {on }\quad \partial \Omega \times (0,T)\cup {\overline{\Omega }}\times \{0\} \end{array} \right. \end{aligned}$$ with given functions \(F\) and \(g\) . Our main result states that the spatial gradient of the solution is as integrable as the data \(F\) and \(g\) up to the lateral boundary of \(\Omega _T\) , i.e. $$\begin{aligned} F,Dg\in L^q(\Omega _T),\ \partial _t g\in L^{\frac{q(n+2)}{p(n+2)-n}}(\Omega _T) \quad \Rightarrow \quad Du\in L^q(\Omega \times (\delta ,T)) \end{aligned}$$ for any \(q>p\) and \(\delta \in (0,T)\) , together with quantitative estimates. This result is proved in a much more general setting, i.e. for asymptotically regular parabolic systems.  相似文献   

10.
A \(k\times u\lambda \) matrix \(M=[d_{ij}]\) with entries from a group \(U\) of order \(u\) is called a \((u,k,\lambda )\) -difference matrix over \(U\) if the list of quotients \(d_{i\ell }{d_{j\ell }}^{-1}, 1 \le \ell \le u\lambda ,\) contains each element of \(U\) exactly \(\lambda \) times for all \(i\ne j.\) Jungnickel has shown that \(k \le u\lambda \) and it is conjectured that the equality holds only if \(U\) is a \(p\) -group for a prime \(p.\) On the other hand, Winterhof has shown that some known results on the non-existence of \((u,u\lambda ,\lambda )\) -difference matrices are extended to \((u,u\lambda -1,\lambda )\) -difference matrices. This fact suggests us that there is a close connection between these two cases. In this article we show that any \((u,u\lambda -1,\lambda )\) -difference matrix over an abelian \(p\) -group can be extended to a \((u,u\lambda ,\lambda )\) -difference matrix.  相似文献   

11.
Let \(A\) be a compact \(d\) -rectifiable set embedded in Euclidean space \({\mathbb R}^p, d\le p\) . For a given continuous distribution \(\sigma (x)\) with respect to a \(d\) -dimensional Hausdorff measure on \(A\) , our earlier results provided a method for generating \(N\) -point configurations on \(A\) that have an asymptotic distribution \(\sigma (x)\) as \(N\rightarrow \infty \) ; moreover, such configurations are “quasi-uniform” in the sense that the ratio of the covering radius to the separation distance is bounded independently of \(N\) . The method is based upon minimizing the energy of \(N\) particles constrained to \(A\) interacting via a weighted power-law potential \(w(x,y)|x-y|^{-s}\) , where \(s>d\) is a fixed parameter and \(w(x,y)=\left( \sigma (x)\sigma (y)\right) ^{-({s}/{2d})}\) . Here we show that one can generate points on \(A\) with the aforementioned properties keeping in the energy sums only those pairs of points that are located at a distance of at most \(r_N=C_N N^{-1/d}\) from each other, with \(C_N\) being a positive sequence tending to infinity arbitrarily slowly. To do this, we minimize the energy with respect to a varying truncated weight \(v_N(x,y)=\Phi (|x-y|/r_N)\cdot w(x,y)\) , where \(\Phi :(0,\infty )\rightarrow [0,\infty )\) is a bounded function with \(\Phi (t)=0, t\ge 1\) , and \(\lim _{t\rightarrow 0^+}\Phi (t)=1\) . Under appropriate assumptions, this reduces the complexity of generating \(N\) -point “low energy” discretizations to order \(N C_N^d\) computations.  相似文献   

12.
In this paper we will study the equation $$\begin{aligned} \Delta ^2 u=S_2(D^2u),\quad \Omega \subset \mathbb {R}^N, \end{aligned}$$ with \(N=3,\) where \( S_2(D^2u)(x)=\sum _{1\le i , being \(\lambda _i,\) the solutions to the equation $$\begin{aligned} \mathrm{det}\left( \lambda I-D^2u(x)\right) =0, \end{aligned}$$ \(i=1,\dots ,N,\) and \(\Omega \) is a bounded domain with smooth boundary. We deal with several boundary conditions looking for the appropriate framework to get existence and multiplicity of nontrivial solutions. This kind of equation is related to some models of growth, and for this reason it is natural to study the effect of zero order local reaction terms of the type \(F_{\lambda }(x,u)=\lambda |u|^{p-1}u\) , with \(\lambda \in \mathbb {R}\) , \(\lambda >0\) , and \(0 , and also the solvability of the boundary problems with a source term \(f\) satisfying some integrability hypotheses.  相似文献   

13.
Consider the instationary Boussinesq equations in a smooth bounded domain \(\Omega \subseteq \mathbb {R}^3\) with initial values \(u_0 \in L^2_{\sigma }(\Omega )\) , \( \theta _0 \in L^2(\Omega )\) and gravitational force \(g\) . We call \((u,\theta )\) strong solution if \((u,\theta )\) is a weak solution and additionally Serrin’s condition \(u \in L^s(0,T; L^q(\Omega ))\) holds where \( 1 satisfy \(\frac{2}{s} + \frac{3}{q} =1\) . In this paper we show that \(\int _0^{\infty } \Vert e^{-tA} u_0 \Vert _q^s \, dt < \infty \) is necessary and sufficient for the existence of such a strong solution \((u,\theta )\) in a sufficiently small interval \([0,T[\, , 0 < T\le \infty \) . Furthermore we show that strong solutions are uniquely determined and that they are smooth if the data are smooth. The crucial point is the fact that we have required no additional integrability condition for \(\theta \) in the definition of a strong solution \((u,\theta )\) .  相似文献   

14.
We study the extremal solution for the problem \((-\Delta )^s u=\lambda f(u)\) in \(\Omega \) , \(u\equiv 0\) in \(\mathbb R ^n\setminus \Omega \) , where \(\lambda >0\) is a parameter and \(s\in (0,1)\) . We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities we prove that the extremal solution is bounded in dimensions \(n<4s\) . We also show that, for exponential and power-like nonlinearities, the extremal solution is bounded whenever \(n<10s\) . In the limit \(s\uparrow 1\) , \(n<10\) is optimal. In addition, we show that the extremal solution is \(H^s(\mathbb R ^n)\) in any dimension whenever the domain is convex. To obtain some of these results we need \(L^q\) estimates for solutions to the linear Dirichlet problem for the fractional Laplacian with \(L^p\) data. We prove optimal \(L^q\) and \(C^\beta \) estimates, depending on the value of \(p\) . These estimates follow from classical embedding results for the Riesz potential in \(\mathbb R ^n\) . Finally, to prove the \(H^s\) regularity of the extremal solution we need an \(L^\infty \) estimate near the boundary of convex domains, which we obtain via the moving planes method. For it, we use a maximum principle in small domains for integro-differential operators with decreasing kernels.  相似文献   

15.
We present the new semicontinuity theorem for automorphism groups: If a sequence \(\{\Omega _j\}\) of bounded pseudoconvex domains in \(\mathbb C^2\) converges to \(\Omega _0\) in \({\mathcal C}^\infty \) -topology, where \(\Omega _0\) is a bounded pseudoconvex domain in \(\mathbb C^2\) with its boundary \({\mathcal C}^\infty \) and of the D’Angelo finite type and with \(\text {Aut}\,(\Omega _0)\) compact, then there is an integer \(N>0\) such that, for every \(j > N\) , there exists an injective Lie group homomorphism \(\psi _j:\text {Aut}\,(\Omega _j) \rightarrow \text {Aut}\,(\Omega _0)\) . The method of our proof of this theorem is new that it simplifies the proof of the earlier semicontinuity theorems for bounded strongly pseudoconvex domains.  相似文献   

16.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R ^N\) with \(N\ge 3\) and let \(\Sigma _k\) be a closed smooth submanifold of \(\partial \Omega \) of dimension \(1\le k\le N-2\) . In this paper we study the weighted Hardy inequality with weight function singular on \(\Sigma _k\) . In particular we provide necessary and sufficient conditions for existence of minimizers.  相似文献   

17.
We prove a central limit theorem for the volume of projections of the cube \([-1,1]^N\) onto a random subspace of dimension \(n\) , when \(n\) is fixed and \(N\rightarrow \infty \) . Randomness in this case is with respect to the Haar measure on the Grassmannian manifold.  相似文献   

18.
In this paper, we study the abundance of self-avoiding paths of a given length on a supercritical percolation cluster on \(\mathbb{Z }^d\) . More precisely, we count \(Z_N\) , the number of self-avoiding paths of length \(N\) on the infinite cluster starting from the origin (which we condition to be in the cluster). We are interested in estimating the upper growth rate of \(Z_N\) , \(\limsup _{N\rightarrow \infty } Z_N^{1/N}\) , which we call the connective constant of the dilute lattice. After proving that this connective constant is a.s. non-random, we focus on the two-dimensional case and show that for every percolation parameter \(p\in (1/2,1)\) , almost surely, \(Z_N\) grows exponentially slower than its expected value. In other words, we prove that \(\limsup _{N\rightarrow \infty } (Z_N)^{1/N}{<}\lim _{N\rightarrow \infty } \mathbb{E }[Z_N]^{1/N}\) , where the expectation is taken with respect to the percolation process. This result can be considered as a first mathematical attempt to understand the influence of disorder for self-avoiding walks on a (quenched) dilute lattice. Our method, which combines change of measure and coarse graining arguments, does not rely on the specifics of percolation on \(\mathbb{Z }^2\) , so our result can be extended to a large family of two-dimensional models including general self-avoiding walks in a random environment.  相似文献   

19.
In this paper, we study the existence of optimal solutions to a constrained polynomial optimization problem. More precisely, let \(f_0\) and \(f_1, \ldots , f_p :{\mathbb {R}}^n \rightarrow {\mathbb {R}}\) be convenient polynomial functions, and let \(S := \{x \in {\mathbb {R}}^n \ : \ f_i(x) \le 0, i = 1, \ldots , p\} \ne \emptyset .\) Under the assumption that the map \((f_0, f_{1}, \ldots , f_{p}) :{\mathbb {R}}^n \rightarrow {\mathbb {R}}^{p + 1}\) is non-degenerate at infinity, we show that if \(f_0\) is bounded from below on \(S,\) then \(f_0\) attains its infimum on \(S.\)   相似文献   

20.
For vector valued solutions \(u\) to the \(p\) -Laplacian system \(-\triangle _p u=F\) in a domain of \({\mathbb {R}}^n,\,p>1,\,n \ge 2,\) if \(F\) belongs to the limiting Lorentz space \(L(n,1),\) then \(Du\) is continuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号