首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过改变侧链中柔性间隔基的长度,合成了一系列含有两个手性中心的侧链液晶(甲基)丙烯酸酯类聚合物.红外、核磁和GPC表征各中间体、单体及聚合物的结构和分子量.通过DSC和热台偏光显微镜系统地研究了单体和聚合物的液晶态织构.结果表明,含有六个碳的柔性间隔基的丙烯酸酯类聚合物表现为近晶SA和手性近晶SC^*液晶相.  相似文献   

2.
聚丙烯酸酯侧链液晶聚合物的合成与表征   总被引:5,自引:0,他引:5  
以对羟基苯甲酸、氯乙醇和丙烯酸为主要原料,经醚化、酯化和酰氯化反应合成了中间体和含液晶基元的丙烯酸酯单体,后者经自由基聚合合成了聚丙烯酸酯侧链液晶聚合物。用偏光显微镜观察了单体和聚合物的织态结构,用DSC和IR对聚合物进行了表征。结果表明,单体和聚合物均呈现向列型液晶织态结构,聚合物在较宽的温度范围内有很好的液晶性。  相似文献   

3.
杨春才  赵晓光 《应用化学》1992,9(5):116-119
侧链液晶聚合物的合成方法,可归纳为3类:一是烯基的单体,如甲基丙烯酸酯,或丙烯酸酯,氯代丙烯酸酯等,经自由基聚合反应,阴离子聚合反应及甲基丙烯酸酯的基团转移聚合反应,得到侧链液晶聚合物;二是变性反应,如聚硅氧烷与丙烯酸酯介  相似文献   

4.
液晶作为新型材料,在高新技术领域显示出越来越广阔的应用前景,目前科学界对各种类型的液晶,包括主链型,侧链型液晶以及热固性液晶方面的研究非常活跃~([1-4]).含有端烯类双键的液晶化合物,可以通过双键联结到高分子链上,形成高分子液晶化合物,也可与其它烯类单体发生共聚合反应,制备液晶热固性树脂,还可以通过双键氧化,制备液晶环氧树脂,因此有广泛的应用前景~([5,6]).  相似文献   

5.
以含有液晶基元的单体,2,5-双(4-甲氧基苯甲酰氧基)苯乙烯与丙烯醇,通过自由基共聚合反应,首次合成了一系列含液晶性单体和非液晶性单体两种结构的共聚物.采用DSC、偏光显微镜和X-衍射方法研究了共聚物的液晶行为,发现单体和所有的共聚物均有明显的热致液晶性及较宽的液晶态温度范围;随共聚物中液晶性单体含量增加,共聚物玻璃化转变温度Tg和热分解温度Td有所上升,但Tg的变化较小.  相似文献   

6.
综述了近几年嵌段液晶共聚物在合成方面取得的新进展,主要包括活性聚合、液晶(或非液晶、低聚物与非液晶(或液晶)聚全物的单体反应、液晶低聚物与非液晶低降物直接反应和先制备非液晶嵌段共聚物再于侧链引入液晶基元四个方面。同时还简要地介绍了嵌段液晶共聚物的结构、性能以及今后的发展趋势。  相似文献   

7.
在电场和磁场下手性侧链丙烯酸酯液晶聚合物的行为江雪平金顺子漆宗能张树范(中国科学院化学研究所北京100080)关键词手性侧链丙烯酸酯液晶聚合物,红外二向色性,液晶分子排列含有手性液晶基团的聚合物,分子中含有不对称碳原子,在一定条件下使液晶聚合物...  相似文献   

8.
米军  张欣苑 《合成化学》1997,5(4):377-380
合成了含柔性链(C10)的液晶双马来酰亚胺与双烯丙基氧基联苯的共聚物,经FTIR、DSC、偏光显微镜表征了该共聚物的结构及液晶性,结果表明:二者发生共聚反应,且共聚反应快于均聚反应,形成的共聚物具有较好的热致液晶性。  相似文献   

9.
手性丙烯酸酯侧链液晶共聚物的研究   总被引:2,自引:2,他引:2  
手性丙烯酸酯侧链液晶共聚物的研究何流,张树范,漆宗能,王佛松(中国科学院化学研究所北京100080)关键词手性液晶,近晶相,丙烯酸酯共聚物侧链液晶聚合物既具有小分子液晶的光电敏感性,又具有高分子聚集态结构性质,在光学记录、贮存和显示材料领域有潜在的实...  相似文献   

10.
传统的液晶弹性体材料多采用丙烯酸酯类或聚硅氧烷类分子,通过自由基聚合制备.然而由于自由基聚合易被氧气阻聚,固化过程收缩率高且内应力大,传统液晶弹性体材料的力学性能并不是很优异.为解决这一问题,本文合成了带有环氧基团的液晶单体和交联剂,使用碘鎓盐作为引发剂,通过光引发阳离子反应,用原位聚合交联法制备了环氧液晶弹性体材料.光引发阳离子聚合和传统自由基聚合相比,不受氧气影响且弹性体固化时体积收缩率小.对制备出的液晶弹性体材料的晶相和力学等性能进行探究和表征,发现其比传统的丙烯酸酯类或者聚硅氧烷类液晶弹性体材料具有更优异的力学性能,在清亮点以上,其弹性模量达到了0.92 MPa.  相似文献   

11.
The formation of ordered structure in hydrogels derived from copolymers of hydrophilic and hydrophobic monomers with crystalline or liquid‐crystalline moieties is reviewed. The role of water in the formation of ordered structure and its influence on the thermal and mechanical properties of hydrogels are clarified. For example, by inducing a certain amount of water, an amorphous to crystalline transition occurs in gels of acrylic acid/alkyl acrylate copolymers. On the other hand, water induces a liquid‐crystalline (SmA) to liquid‐crystalline (SmI) transition in copolymers consisting of acrylic acid and 11‐(4′‐cyanobiphenyloxy)undecyl acrylate. These specific features regarding the formation of ordered structures in hydrogels might shed some light on the formation of ordered structure in biological tissues.  相似文献   

12.
The synthesis and physical properties are described for a thermally stable liquid crystalline (LC) thermoset based on all aromatic ester units. The persistence of the liquid crystalline phase throughout the curing process was monitored with polarizing optical microscopy. The applicability of these new liquid crystalline thermosets has been evaluated for use as an adhesive for bonding metals, namely titanium. The failure of the adhesive bonds always occurs within the polymer; thus it can be inferred that bonding at the polymer-metal interface is very good. This strong interfacial bonding is attributed to low cure shrinkage and CTE matching of the underlying substrate by the LC resins. The cohesive properties and strength of the cured resin can be greatly enhanced by the addition of filler materials. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35:1061–1067, 1997  相似文献   

13.
The synthesis and liquid crystalline properties of some new triphenylene discotics bearing pendant acrylate groups are described. Mesophase behaviour is found to be sensitive to the number and position of substituents, the linking chain length, and to change between acrylate and methacrylate termini. Investigation of the isomerically pure triphenylene acrylate and methacrylate derivatives showed that the molecular symmetry also has a modest effect on mesophase behaviour. Unsurprisingly columnar phases are formed only when all substituent chains are of comparable length and methacrylates are far superior to simple acrylate termini, probably due to favourable space filling in the mesophase.  相似文献   

14.
液晶聚合物网络研究进展   总被引:5,自引:0,他引:5  
综述了液晶聚合物网络的新进展。包括液晶热固体、液晶弹性体和液晶互穿网络。介绍了各种网络的合成、主要性能和应用前景。  相似文献   

15.
Liquid crystalline aromatic monocyanate ( M ) and dicyanates ( D1 and D2 ) with trans-stilbene ( Ph CHCH Ph ) structure were synthesized and their cyclotrimerization reactions were studied by differential scanning calorimetry and infrared spectroscopy. Monocyanate M underwent cyclotrimerization to yield a trimerized material with discotic properties. Dicyanate D2 and its cured product failed to exhibit any mesophase. In contrast, polycyclotrimerization of dicyanate D1 obtained a liquid crystalline thermoset with its schlieren texture prolonged over a wide temperature range. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Liquid crystal is a material which is between solid and liquid phase and commonly called mesophase. Blends of liquid crystal are of great interest because of their unique optical properties. Blending in this study using two monomers of liquid crystal were cholesteryl acrylate and methyl phenyl benzoyl acrylate. The polymerization process using uv curing techniques by irradiation UV ray and without irradiation UV ray. Polymerization of blending liquid crystal acrylate using initiator 2-hydroxy-2-methyl-1-phenylpropane. Based on peak at GPC curve of polymerization by irradiation UV ray, type of that polymer is copolymer. Therefore the polymerization without UV ray, type of that polymer is homopolymer. SEM images of liquid crystal acrylate polymer showed lamella chain models that are characteristic of a polymer chains. Type of polymer liquid crystal acrylate was the type of Side Chain Liquid Crystalline Polymers (SCLCPs). Therefore acrylate polymer liquid crystal in this research has semi-crystalline phase, which contained crystalline phase and amorphous phase on the XRD pattern. The results of FT-IR spectroscopic characterization of the two monomers showed a peak at the wave number of 1600.43 cm -1 and 1622.86 cm-1 which indicates a double bond (C=C) were obtained from acrylation. While the spectroscopy on the product blending the wave number of the peak regions is reduced that shows that carbon double bonds (C=C) in the acrylate group has polymerized. It also strengthened with a very sharp peak for CC functional groups on the wave number of 2855.15 cm-1. The results of this study indicate that the liquid crystal polymer acrylic polymerization results with radiation UV ray and without UV ray, respectively absorb light in the UV wavelength region 363 nm and 351 nm.  相似文献   

17.
An infrared analysis of phase transitions in three enantiotropic liquid crystalline acrylate monomers with different spacer lengths bearing urethane groups and cholesteryl as mesogen was carried out. Through heating and cooling, spectral modifications especially at the level of carbonyl, –NH– and urethane alkoxyl oxygen groups were found. These findings reveal the influence of hydrogen bonding on mesomorphic properties of the studied compounds mentioning that both liquid crystal transitions are evidenced by the spectral changes. For all the compounds studied, the values of the transition temperatures deduced from the spectral modifications are in good agreement with those obtained from DSC measurements.  相似文献   

18.
《Liquid crystals》1998,24(4):555-561
Polymer dispersed liquid crystal (PDLC) materials were prepared by a polymerization induced phase separation (PIPS) process using UV radiation. The samples were obtained from the liquid crystalline component E7 and a blend of monofunctional (2-ethylhexyl acrylate) and difunctional (1,6-hexane diol diacrylate) monomers as precursors of the matrix. Polymerization energetics and thermodynamic properties of PDLC materials were studied by differential scanning calorimetry. Photopolymerization kinetics and phase behaviour of the PDLC are presented and discussed as a function of UV polymerization conditions (UV light intensity, UV time exposure and isothermal curing temperature).  相似文献   

19.
The network formation and viscoelastic behavior of a liquid crystalline monomer, whose structure includes both acrylate and acetylene reactive groups, have been studied. By combining both photo and thermal polymerization, the networks can be formed in two separate steps, with the initial photopolymerization dominated by acrylate crosslinking and subsequent thermal polymerization dominated by acetylene crosslinking. In addition, the monomer exhibits a liquid crystalline phase. Photopolymerization while in the liquid crystal phase locks in the molecular ordering. Dynamic mechanical analysis shows that networks formed from the liquid crystalline phase have lower crosslink densities and narrower distributions of molecular weights between crosslinks when compared to networks formed from the isotropic phase (and at higher polymerization temperatures). After thermal postcure at 250°C, the networks formed from the isotropic monomer have a 23% higher dynamic mechanical storage modulus (in the glassy state) than the networks formed from the liquid crystalline monomer. The thermally postcured networks have unusually high glass‐transition temperatures, which exceed 300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1183–1190, 1999  相似文献   

20.
Vinylated polyhedral oligomeric silsesquioxane (POSS-M) was prepared by the reaction of POSS containing amine groups with acrylic acid. Azobenzene liquid crystalline copolymer (LCP-POSS) was then synthesized with 6.0 mol% POSS-M and 94.0 mol% acrylate monomer containing azobenzene liquid crystalline moiety (Azo-M) by free-radical copolymerization. Homopolymer of Azo-M (LCP) was also synthesized under the same conditions. Their thermal properties and liquid crystallinity were characterized by Thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), Wide-angle X-ray diffraction experiments (XRD) and polarized optical micrographs (POM). The results showed that LCP-POSS has higher thermal stability and glass transition temperature than pure LCP due to the incorporation of the rigid cage-like POSS. Especially, LCP-POSS exhibits enantiotropic smectic and nematic liquid crystalline behaviors, its smectic-nematic transition temperature (T SN) and nematic-isotropic transition temperature (T NI) are higher than those of pure LCP, which may promote and extend its applications on stimuli-responsive materials and devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号