首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

2.
The heteroditopic, P-N-chelating ligand diphenylphosphino(phenyl pyridin-2-yl methylene)amine (1) has been synthesised via a simple ‘one-pot’ procedure and its donor characteristics assessed. The neutral [MX(Y)(12-P-N)] (3, M = Rh, X = Cl, Y = CO; 4, M = Pd, X = Y = Cl; 5, M = Pd, X = Cl, Y = Me; 6, M = Pt, X = Y = Cl; 7, M = Pt, X = Cl, Y = Me; 8, M = Pt, X = Y = Me) and cationic [Pd(Me)(MeCN)(12-P-N)][Z] (9, Z = B{3,5-(CF3)2-C6H3}4; 10, Z = PF6) complexes of 1 have been prepared and characterised. The solid-state structures of complexes 3, 4, 6 and 7 have been established by X-ray crystallography. Reactions of [PdCl(Me)(12-P-N)] towards CO and tBuNC have been investigated, affording the corresponding η1-acyl (12) and -iminoacyl (14) complexes, respectively. Similar insertion chemistry is observed for the cationic derivative 9. Treatment of the acyl complex 12 with ethene at elevated pressure establishes an equilibrium between the starting material and the product resulting from insertion, 13. Under catalytic conditions, combination of palladium(II) with 1 in MeOH affords a selective initiator for the formation of 4-oxo-hexanoic acid methyl ester (15) from CO/ethene (38 bar, 90 °C).  相似文献   

3.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

4.
The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes ; R = H, R′ = C(CH3)3 (1b), R = H, R′ = CF3 (1c); R = CH3, R′ = CH(CH3)2 (2a); R = CH3, R′ = C(CH3)3 (2b); and R = CH3, R′ = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (1H, 13C{1H}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: ln (p/Pa)(±0.06) = −18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 ± 3 kJ mol−1 and 389.5 ± 8 J K−1 mol−1, respectively.  相似文献   

5.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

6.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

7.
The first gold(I) trithiophosphite complexes were synthesised and fully characterised. Reaction of (tht)AuX (X = Cl, C6F5; tht = tetrahydrothiophene) with trithiophosphites (RS)3P (R = Me, Ph) and the bicyclic [(SCH2CH2S)PSCH2]2 (2L) afforded the corresponding molecular complexes (RS)3PAuX [R = Me, X = Cl (1); R = Me, X = C6F5 (2); R = Ph, X = Cl (3); R = Ph, X = C6F5 (4)], and 2L(AuX)2 [X = Cl (5), X = C6F5 (6)]. Reacting (tht)AuCl consecutively with two mole equivalents of (MeS)3P and then AgOTf, gave the ionic compound {[(MeS)3P]2Au}OTf (7). The compounds were characterised by multinuclear NMR spectroscopy, IR measurements and mass spectrometry, and the crystal and molecular structures of 1, 3, 6, two polymorphs of 2 as well as the known (MeO)3PAuCl (8) were determined by X-ray diffraction. The halide complexes 1 and 8 are isostructural and exhibit infinite chains of “crossed-sword”-type aurophilic interactions with Au?Au contact distances of 3.2942(3) and 3.1635(4) Å, respectively. Complex 6 exhibits a long Au?Au contact of 3.4671(9) Å. Au?S interactions between 3.3455(7) and 3.520(2) Å are present in the structures of 1 and one polymorph of 2.  相似文献   

8.
The metallacyclic complexes (OC)4MC(η2-NHCH2CHCHX)Fc (4; X = H) and (5; X = CH2OH) [M = Cr: a; Mo: b; W: c; Fc = ferrocenyl = CpFe(C5H4)] were obtained in good yields upon photo-decarbonylation of the bimetallic allylaminocarbene complexes (OC)5MC(NHCH2CHCHX)Fc (2; X = H)/(3; X = CH2OH). At room temperature complexes 2/3 exist as mixtures of E- and predominantly Z-isomers with regard to the C-N bond. The molecular structures of 4b and 4c were determined by X-ray diffraction analyses. The intermetallic communicative effects and the interplay of Fc and η2-alkene moieties of 4a and 4b were assessed by cyclovoltammetry. All complexes were also characterized in solution by one- and two-dimensional NMR spectroscopy (1H, 13C, 1H NOE, 1H/1H COSY, 13C/1H HETCOR).  相似文献   

9.
The ligands (ScSp)-1-diphenylphosphino-2,1′-(1-dicyclohexylphosphinopropanediyl)ferrocene, (ScSp)-PPCyPF, and (ScSp)-1-diphenylphosphino-2,1′-(1-diphenylphosphinopropanediyl)ferrocene, (ScSp)-PPPhPF, have been used in the synthesis of the new Pd(0) and Pd(II) derivatives [Pd(PPCyPF)(DMFU)] (1) (DMFU = dimethylfumarate), [Pd(PPCyPF)(MA)] (2) (MA = maleic anhydride), [Pd(η3-2-Me-C3H4)(PP)]OTf (PP = PPCyPF, 3; PPPhPF, 4) (OTf = triflate), [PdRR′(PP)] (R = Me, R′ = Cl, PP = PPCyPF, 5, PPPhPF, 6; R = R′ = Me, PP = PPCyPF, 7, PPPhPF, 8; R = R′ = C6F5, PP = PPCyPF, 9, PPPhPF, 10). The molecular structure of 7 has been determined by X-ray diffraction. In the cases of complexes 1-4 two isomers are formed depending on the orientation of the ancillary ligand with respect to the ferrocenyl core. The stereochemistry of these complexes has been determined. In complex 6 the two possible isomers are obtained whereas in complex 5 the derivative with the Me group trans to PPh2 is selectively formed. Restricted rotation of the pentafluorophenyl groups with respect to the Pd-C bond has been found in 9 and 10. In all derivatives the conformation of the ferrocenyl ligand is the same as that seen by X-ray diffraction and deduced from NMR data.  相似文献   

10.
Diacetylplatinum(II) complexes [Pt(COMe)2()] ( = bpy, 3a; 4,4′-t-Bu2-bpy, 3b), obtained by the reaction of [Pt(COMe)2X(H)()] with NaOH in CH2Cl2/H2O, were found to undergo oxidative addition reactions with halogens (Br2, I2) yielding the platinum(IV) complexes (trans, OC-6-13)/(cis, OC-6-32) [Pt(COMe)2X2()] ( = bpy, X = Br, 4a/4b; I, 4c/4d;  = 4,4′-t-Bu2-bpy, X = Br, 4e/4f; I, 4g/4h). The diastereoselectivity of the reactions proved to be strongly dependent on the solvent. The oxidative addition of (SCN)2 resulted in the formation of (OC-6-13)-[Pt(COMe)2(SCN)2()] ( = bpy, 4i; 4,4′-t-Bu2-bpy, 4j). In a reaction the reverse of their formation, the diacetylplatinum(II) complexes 3 underwent oxidative addition with anhydrous HX (X = Cl, Br, I), prepared in situ from Me3SiX/H2O, yielding diacetyl(hydrido)platinum(IV) complexes [Pt(COMe)2X(H)()] ( = bpy, X = Cl, 5a; Br, 5b; I, 5c;  = 4,4′-t-Bu2-bpy, X = Cl, 5d; Br, 5e; I, 5f). Furthermore, diacetyldihaloplatinum complexes 4 were found to undergo reductive elimination reactions in boiling methanol yielding acetylplatinum(II) complexes [Pt(COMe)X()] ( = bpy, X = Br, 6b; I, 6c;  = 4,4′-t-Bu2-bpy, X = Br, 6e; I, 6f). All complexes were characterized by microanalysis, IR and 1H and 13C NMR spectroscopy. Additionally, the bis(thiocyanato) complex 4j was characterized by single-crystal X-ray diffraction analysis.  相似文献   

11.
The synthesis of 1,3-diarylimidazolidin-2-ylidene (NHC) precursor, 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride, (3b) has been extended to the electronically and sterically modified NHC precursors 3a (X = H), 3c (X = Br) and 3e (X = Cl) in order to investigate the electronic effect of a p-substituent (X) on cross-coupling catalysts. Complexes of the type PdCl2(NHC)2 (5), PdCl2(NHC)(PPh3) (6) and [RhCl(NHC)(cod)] (7) were prepared from 3 or 4d (1,3-bis(2,4-dimethylphenyl)-2-trichloromethylimidazolidin). Initial decomposition temperatures of the complexes 5 and 6 were determined by TGA. In situ formed complexes from Pd(OAc)2 and 3 as well as the preformed complexes 5 and 6 have been tested as catalysts in coupling of phenylboronic acid with 4-haloacetophenones. The electron donating ability of NHCs derived from 3 was assessed by measuring C-O frequencies in the respective [RhCl(NHC)(CO)2] complex 8 which was prepared by replacement of cod ligand of 7 with CO. An interesting correlation between the electron-donating nature of the aryl substituent and catalytic activity and also initial decomposition temperature of the complexes 5 and 6 was observed.  相似文献   

12.
Neutral η1-benzylnickel carbene complexes, [Ni(η1-CH2C6H5)(IiPr)(PMe3)(Cl)] (3) (IiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) and [Ni(η1-CH2C6H5)(SIiPr)(PMe3)(Cl)] (4) (SIiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidene), were prepared by the reaction between [Ni(η3-CH2C6H5)(PMe3)(Cl)] and an equivalent amount of the corresponding free N-heterocyclic carbene. The preparation of η3-benzylnickel carbene complexes, [Ni(η3-CH2C6H5)(IiPr)(Cl)] (5) and [Ni(η3-CH2C6H5)(SIiPr)(Cl)] (6) were carried out by the abstraction of PMe3 from 3 and 4 by the treatment of B(C6F5)3. The treatment of AgX on 5 and 6 produced the anion-exchanged complexes, [Ni(η3-CH2C6H5)(NHC)(X)] (7, NHC = IiPr, X = O2CCF3; 8, NHC = IiPr, X = O3SCF3; 9, NHC = SIiPr, X = O2CCF3; 10, NHC = SIiPr, X = O3SCF3). The solid state structures of 3 and 10 were determined by X-ray crystallography. The η3-benzyl complexes of IiPr (5, 7, and 8) alone, in the absence of any activators such as borate and MAO, showed good catalytic activity towards the vinyl-type norbornene polymerization. The catalyst was thermally robust and the activity increases as the temperature rises to 130 °C.  相似文献   

13.
The nickel(0) complex [Ni(bpy)(cod)] (bpy: 2,2′-bipyridine, cod: cycloocta-1,5-diene) was used as a mild reducing reagent for the synthesis of the extremely reactive low-valent palladium complexes [Pd2X2(cod)2] (1: X = Cl, 2: X = Br), Pd(cod)2 (3) and Pd(norbornene)3 (4). The X-ray analysis of 1 showed that the two [Pd(cod)(Cl)] moieties are only connected by a short Pd(I)-Pd(I) bond (bond length: 2.5379(4) Å) with the chloride ions as monodentate ligands. The X-ray structure of 3 which is also known to be an extremely reactive compound could be determined by X-ray diffraction. As expected, the Pd(0) centre is surrounded by the two cod ligands to form a PdC4 tetrahedron with typical Pd-C bond lengths. The crystal structure of 3 shows it to be very similar to the closely related complexes M(cod)2 (M: Ni, Pt). The X-ray structure of 4 displays that the Pd(0) centre is in a trigonal planar environment of the three olefin groups. According to 1H NMR measurements the complexes have the same structure in solution as found in the solid state.  相似文献   

14.
Water-soluble functionalized bis(phosphine) ligands L (ah) of the general formula CH2(CH2PR2)2, where for a: R = (CH2)6OH; bg: R = (CH2)nP(O)(OEt)2, n = 2–6 and n = 8; h: R = (CH2)3NH2 ( Scheme 1), have been prepared photochemically by hydrophosphination of the corresponding 1-alkenes with H2P(CH2)3PH2. Water-soluble palladium complexes cis-[Pd(L)(OAc)2] (18) were obtained by the reaction of Pd(OAc)2 with the ligands ah in a 1:1 mixture of dichloromethane:acetonitrile. The water-soluble phosphine ligands and their palladium complexes were characterized by IR, 1H and 31P NMR. A crystallographic study of complex 1 shows that the Pd(II) ion has a square planar coordination sphere in which the acetate ligands and the diphosphine ligand deviate by less than 0.12 Å from ideal planar.  相似文献   

15.
The ligands (HL1, HL2 and HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods, and the structures of the ligands have been elucidated by X-ray diffraction. In the case of HL1, we have tried the reaction with [ReX(CO)5] (X = Br, Cl) in toluene and we proved the formation of the adduct also by this way by the isolation of single crystals of 1a′ · ½C7H8.  相似文献   

16.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

17.
Three new diorganotin(IV) complexes of the general formula R2Sn[3-(OMe)-2-OC6H3CHN-NC(O)Ph] (R = Ph, Ia; R = Me, Ib; R = n-Bu, Ic) have been synthesised from the corresponding diorganotin(IV) dichlorides and the ligand, N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide in methanol at room temperature in the presence of trimethylamine. All the complexes have been characterized by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed by single crystal X-ray diffraction analysis of one representative compound Ia. Complex Ia crystallises in the orthorhombic system, space group Pna21 with a = 12.424(5), b = 9.911(5), c = 18.872(5) Å; Z = 4. The ligand N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L) coordinates to the metal centre in the enolate form via the phenolic O, imino N and enolic O atoms. In Ia, the central tin atom adopts a distorted trigonal bipyramidal coordination geometry with the oxygen atoms in axial positions, while the imino nitrogen atom of the Schiff base and the two phenyl groups occupy the equatorial sites. The δ(119Sn) values for the complexes Ia, Ib and Ic are −327.3, −151.7 and −187.2 ppm, respectively, thus indicating penta-coordinated Sn centres in solution.  相似文献   

18.
We report a combined experimental and computational study of new rhenium tricarbonyl complexes based on the bidentate heterocyclic N-N ligands 2-(4-methylpyridin-2-yl)benzo[d]-X-azole (X = N-CH3, O, or S) and 2-(benzo[d]-X-azol-2-yl)-4-methylquinoline (X = N-CH3, O, or S). Two sets of complexes are reported. Chloro complexes, described by the general formula Re(CO)3[2-(4-methylpyridin-2-yl)benzo[d]-X-azole]Cl (X = N-CH3, 1; X = O, 2; X = S, 3) and Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]Cl (X = N-CH3, 4; X = O, 5; X = S, 6) were synthesized heating at reflux Re(CO)5Cl with the appropriate N-N ligand in toluene. The corresponding pyridine set {Re(CO)3[2-(4-methylpyridin-2-yl)benzo-X-azole]py}PF6 (X = N-CH3, 7; X = O, 8; X = S, 9) and {Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]py}PF6 (X = N-CH3, 10; X = O, 11; X = S, 12) was synthesized by halide abstraction with silver nitrate of 1-6 followed by heating in pyridine and isolated as their hexafluorophosphate salts. All complexes have been fully characterized by IR, NMR, electrochemical techniques and luminescence. The crystal structures of 1 and 7 were obtained by X-ray diffraction. DFT and time-dependent (TD) DFT calculations were carried out for investigating the effect of the organic ligand on the optical properties and electronic structure of the reported complexes.  相似文献   

19.
A series of new hydroxyindanimine ligands [ArNCC2H3(CH3)C6H2(R)OH] (Ar = 2,6-i-Pr2C6H3, R = H (HL1), R = Cl (HL2), and R = Me (HL3)) were synthesized and characterized. Reaction of hydroxyindanimine with Cu(OAc)2 · H2O results in the formation of the mononuclear bis(hydroxyindaniminato)copper(II) complexes Cu[ArNCC2H3(CH3)C6H2(R)O]2 (Ar = 2,6-i-Pr2C6H3, R = H (1), R = Cl (2), and R = Me (3)). The complex 2′ was obtained from the chlorobenzene solution of the complex 2, which has the same molecule formula with the complex 2 but it is a polymorph. All copper(II) complexes were characterized by their IR and elemental analyses. In addition, X-ray structure analyses were performed for complexes 1, 2, and 2′. After being activated with methylaluminoxane (MAO), complexes 1-3 can be used as catalysts for the vinyl polymerization of norbornene with moderate catalytic activities. Catalytic activities and the molecular weight of polynorbornene have been investigated for various reaction conditions.  相似文献   

20.
Five non-symmetrical PCN pincer palladium(II) complexes [PdCl{C6H3-2-(CHNR)-6-()}] (R = m-ClC6H4, R′ = Ph (2a); R = Ph, R′ = Ph (2b); R = i-Pr, R′ = Ph (2c); R = m-ClC6H4, R′ = i-Pr (2d); R = (S)-1-phenylethyl, R′ = Ph (2e)) have been easily prepared in only two steps from readily available m-hydroxybenzaldehyde and characterized by HRMS, 1H NMR, 13C NMR, 31P NMR and IR spectra. The molecular structures of 2a and 2b have been further determined by X-ray single-crystal diffraction. The obtained Pd complexes were found to be effective catalysts for the Suzuki and copper-free Sonogashira cross-coupling reactions which could be carried out in the undried solvent under air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号