首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
The reaction of HgCl2 and Te(R)CH2SiMe3 [R = CH2SiMe3 (1), Ph (2)] in ethanol yielded a mononuclear complex [HgCl2{Te(R)CH2SiMe3}2] (R = Ph, 3a; R = CH2SiMe3, 3b). The recrystallization of 3a or 3b from CH2Cl2 produced a dinuclear complex [Hg2Cl2(μ-Cl)2{Te(R)CH2SiMe3}2] (R = Ph, 4a; R = CH2SiMe3, 4b). When 3a was dissolved in CH2Cl2, the solvent quickly removed, and the solid recrystallized from EtOH, a stable ionic [HgCl{Te(Ph)CH2SiMe3}3]Cl·2EtOH (5a·2EtOH) was obtained. Crystals of [HgCl2{Te(CH2SiMe)2}]·2HgCl2·CH2Cl2 (6b·2HgCl2·CH2Cl2) were obtained from the CH2Cl2 solution of 3b upon prolonged standing. The complex formation was monitored by 125Te-, and 199Hg NMR spectroscopy, and the crystal structures of the complexes were determined by single crystal X-ray crystallography.  相似文献   

2.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

3.
The reaction of (hexyl)HC(mim)2 (1, mim=N-methyl-imidazol-2-yl) with (cod)PdMeCl in C6H6 yields {(hexyl)HC(mim)2}Pd(Me)Cl (3). The photochemical reaction of 3 with CH2Cl2 at 23 °C in ambient room light yields {(hexyl)HC(mim)2}Pd(CHCl2)Cl (4). It is proposed that this reaction proceeds by homolytic scission of the PdMe bond of 3.  相似文献   

4.
Trifluoromethyl propargylic carbocation [I] generated from the reaction of 1-amino substituted 3-trifluoromethyl-2-propynyl trimethylsilyl ether 1 with TMSOTf in CH2Cl2 at −15 °C, followed by warming to room temperature reacted with 1.2 equiv of substituted benzenes, RMgBr and allylsilane to give the enones 3a-l and 5, respectively. The reaction of [I] with anisole, followed by treatment with Grignard reagents afforded the corresponding allyl amine derivatives 7, which underwent cyclization reaction to give indene derivatives 8 by using 2 equiv of TMSOTf.  相似文献   

5.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   

6.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

7.
In this study, the crystal structures of the dispiroansa spermine derivatives of cyclotriphosphazene are characterised for the first time. The reaction of spiro-, gem-disubstituted cyclotriphosphazene derivatives, N3P3Cl4R2 [R = NHPh, (HN(CH2)3NH)0.5, (OCH2C(CH3)2CH2O)0.5], (13), with spermine (4), in aprotic solvents such as CH2Cl2 results in a series of dispirobino spermine derivatives of cyclotriphosphazene (5a, 6a, 7), namely spermine bridged compounds. Whereas, in protic solvents such as CHCl3 give, dispiroansa derivatives (810) namely tetracyclic cyclotriphosphazene. The new series of dispirobino and dispiroansa spermine derivatives of cyclotriphosphazene (5a, 6a, 710) have been characterised by elemental analysis, mass spectrometry, X-ray (for 5a, 8, 10) and 1H, 31P NMR spectroscopies.  相似文献   

8.
Three mixed-metal single-molecule magnets containing [Mn8Fe4O12]16+ cores are synthesized and characterized. The reaction of FeCl2·4H2O with KMnO4 and RCOOH (R = CH2Cl, CH2Br) in H2O gives [Mn8Fe4O12(O2CR)16(H2O)4] (R = CH2Cl (1), CH2Br (2)) in yields of 43% and 40%, respectively. Treatment of complex 1 with an excess of CHCl2COOH in CH2Cl2 gives [Mn8Fe4O12(O2CCHCl2)16(H2O)4]·CH2Cl2·10H2O (3·CH2Cl2·10H2O) in a yield of 83%. The X-ray structure analysis reveals that all three complexes consist of a trapped-valence dodecanuclear core comprising 4MnIII, 4FeIII, and 4MnIV ions. DC magnetic susceptibility and magnetization measurements indicate that all three complexes exhibit intramolecular antiferromagnetic interaction, resulting in an S = 4 ground state. In addition, frequency-dependent out-of-phase AC magnetic susceptibility signals at low temperature for complexes 1, 2, and 3 are indicative of their single-molecule magnetism behavior.  相似文献   

9.
A series of organotin compounds bearing two intramolecular N → Sn coordination bonds RSn(OCH2CH2NMe2)2Cl (R = Me (4), n-Bu (5), Mes (6)) were synthesized in good yields. These compounds as well as 2 (R = Ph) react with PhSnCl3 to give redistribution products RPhSnCl2 and (Me2NCH2CH2O)2SnCl2 (3). The direction of redistribution reactions is reverse to Kocheshkov reaction. DFT calculations have shown that the driving force of the reactions is formation of intramolecular N → Sn coordination bonds in (RO)2SnCl2 (3), the Lewis acid stronger than RSn(OR)2Cl (2, 4-6). The mechanism of the redistribution reaction between 2 and PhSnCl3 consists of two steps: (1) initial exchange of OCH2CH2NMe2 and Cl to give PhSn(OCH2CH2NMe2)Cl2 (7) followed by (2). Ph and OCH2CH2NMe2 exchange.  相似文献   

10.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

11.
Niobium and tantalum pentahalides, MX5 (1), react with acetic acid and halo-substituted acetic acids, in 1:1 ratio, to give the dinuclear complexes [MX4(μ-OOCMe)]2 [M = Nb, X = Cl, 2a; M = Ta, X = Cl, 2b; Br, 2c] and [MCl4(μ-OOCR)]2 [M = Nb, R = CH2Cl, 4a; CHCl2, 4c; CCl3, 4e; CF3, 4g; CHBr2, 4i; CH2I, 4j; M = Ta, R = CH2Cl, 4b; CHCl2, 4d; CCl3, 4f; CF3, 4h]. The solid state structures of 2b and 4e have been ascertained by X-ray diffraction studies. The reactions of 1 with acetic anhydride and halo-substituted acetic anhydrides result in C–O bond activation and afford 2 and 4, respectively, with concomitant formation of acetyl halides. Moreover, the complexes MCl5[OC(Cl)Me] [M = Nb, 3a; M = Ta, 3b] have been detected in significant amounts within the mixtures of the reactions of MCl5 with acetic anhydride. TaI5 is unreactive, at room temperature, towards both MeCOOH and (MeCO)2O. MF5 react with RCOOH (R = Me, CH2Cl) in 1:1 molar ratio, to afford the ionic compounds [MF4(RCOOH)2][MF6], 5ad, in high yields. The additions of (RCO)2O (R = Me, CH2Cl) to MF5 give 5, suggesting that anhydride C–H and C–O bonds activation is operative during the course of these reactions.  相似文献   

12.
The reaction of trichlorosilane (1a) at 250 °C with cycloalkenes, such as cyclopentene (2a), cyclohexene (2b), cycloheptene (2c), and cyclooctene (2d), gave cycloalkyltrichlorosilanes [CnH2n−1SiCl3: n = 5 (3a), 6 (3b), 7 (3c), 8 (3d)] within 6 h in excellent yields (97-98%), but the similar reactions using methyldichlorosilane (1b) instead of 1a required a longer reaction time of 40 h and afforded cycloalkyl(methyl)dichlorosilanes [CnH2n−1SiMeCl2: n = 5 (3e), 6 (3f), 7 (3g), 8 (3h)] in 88-92% yields with 4-8% recovery of reactant 2. In large (2, 0.29 mol)-scale preparations, the reactions of 2a and 2b with 1a (0.58 mol) under the same condition gave 3a and 3b in 95% and 94% isolated yields, respectively. The relative reactivity of four hydrosilanes [HSiCl3−mMem: m = 0-3] in the reaction with 2a indicates that as the number of chlorine-substituent(s) on the silicon increases the rate of the reaction decreases in the following order: n = 3 > 2 > 1 ? 0. In the reaction with 1a, the relative reactivity of four cycloalkenes (ring size = 5-8) decreases in the following order: 2d > 2a > 2c > 2b. Meanwhile linear alkenes like 1-hexene undergo two reactions of self-isomerization and hydrosilylation with hydrosilane to give a mixture of the three isomers (1-, 2-, and 3-silylated hexanes). In this reaction, the reactivity of the terminal 1-hexene is higher than the internal 2- and 3-hexene. The redistribution of hydrosilane 1 and the polymerization of olefin 2 occurred rarely under the thermal reaction condition.  相似文献   

13.
A straightforward method for the preparation of metallo carbosiloxanes of type Si(OCH2CH2CH2SiMe2[OCH2PPh2M(CO)n])4 (n = 3, M = Ni, 7a; n = 4, M = Fe, 7b; n = 5: M = Mo, 7c; M = W, 7d), Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)4 (8) and Me2Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)2 (11) is described. The reaction of Si(OCH2CH2CH2SiMeXCl)4 (1: X = Me, 2: X = Cl) or Me2Si(OCH2CH2CH2SiMeCl2)2 (9) with HOCH2PPh2 (3) produces Si(OCH2CH2CH2SiMe2(OCH2PPh2))4 (4), Si(OCH2CH2CH2SiMe(OCH2PPh2)2)4 (5) or Me2Si(OCH2CH2CH2SiMe(OCH2PPh2)2)2 (10) in presence of DABCO. Treatment of the latter molecules with Ni(CO)4 (6a), Fe2(CO)9 (6b), M(CO)5(Thf) (6c: M = Mo; 6d: M = W), respectively, gives the title compounds 7a-7d, 8 and 11 in which the PPh2 groups are datively bound to a 16-valence-electron metal carbonyl fragment.The formation of analytical pure and uniform branched and dendritic metallo carbosiloxanes is based on elemental analysis, and IR, 1H, 13C{1H}, 29Si{1H} and 31P{1H} NMR spectroscopic studies. In addition, ESI-TOF mass spectrometric studies were carried out.  相似文献   

14.
The second generation of Grubbs type catalyst, (PCy3)(H2IMes)Cl2RuCHPh (1) undergoes the Cl replacement with CH3CN to give cationic ruthenium carbene complexes, [(RCN)3(H2IMes)RuCHPh](OTf)2 (2, R = CH3 (a), Ph (b)) in the presence of AgOTf. The reaction of 2a with H2O in the presence of CH3CN gives (aqua)ruthenium complex, [Ru(H2IMes)(NCCH3) 4(H2O)](OTf)2 (3) and benzaldehyde. Benzaldehyde is also observed in the reaction of 1 with H2O. Plausible reaction pathways are suggested for the degradation of ruthenium benzylidenes to give benzaldehyde on the basis of the isotope labeling experiments.  相似文献   

15.
Wittig reaction of 3-[4-(dimethylamino)phenyl]propanal (5) with (3-guaiazulenylmethyl)triphenylphosphonium bromide (4) in ethanol containing NaOEt at 25 °C for 24 h under argon gives the title (2E,4E)-1,3-butadiene derivative 6E in 19% isolated yield. Spectroscopic properties, crystal structure, and electrochemical behavior of the obtained new extended π-electron system 6E, compared with those of the previously reported (E)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)ethylene (12), are documented. Furthermore, reaction of 6E with 1,1,2,2-tetracyanoethylene (TCNE) in benzene at 25 °C for 24 h under argon affords a new Diels-Alder adduct 8 in 59% isolated yield. Along with spectroscopic properties of the [π4+π2] cycloaddition product 8, the crystal structure, possessing a cis-3,6-substituted 1,1,2,2-tetracyano-4-cyclohexene unit, is shown. Moreover, reaction of 6E with (E)-1,2-dicyanoethylene (DCNE) under the same reaction conditions as the above gives no product; however, this reaction in p-xylene at reflux temperature (138 °C) for four days under argon affords a new Diels-Alder adduct 9 in 54% isolated yield. Although reaction of 6E with DCNE in toluene at reflux temperature (110 °C) for four days under argon provides 9 very slightly, reaction of 6E with dimethyl acetylenedicarboxylate (DMAD) in toluene at reflux temperature for two days under argon yields a new Diels-Alder adduct 10, in 58% isolated yield, which upon oxidation with MnO2 in CH2Cl2 at 25 °C for 1 h gives 11, converting a (CH3)2N-4″ into CH3NH-4″ group, in 37% isolated yield. The crystal structure of 11 supports the molecular structure 10 possessing a partial structure cis-3,6-substituted 1,2-dimethoxycarbonyl-1,4-cyclohexadiene. The title basic studies on the above are reported in detail.  相似文献   

16.
The oxime-substituted NCN-pincer molecules HONCH-1-C6H3(CH2NMe2)2-3,5 (2a) and HONCH-4-C6H2(CH2NMe2)2-2,6-Br-1 (2b) were accessible by treatment of the benzaldehydes H(O)C-4-C6H3(CH2NMe2)2-3,5 (1a) and H(O)C-4-C6H2(CH2NMe2)2-2,6-Br-1 (1b) with an excess of hydroxylamine. In the solid state both compounds are forming polymers with intermolecular O-H?N connectivities between the Me2NCH2 substituents and the oxime entity of further molecules of 2a and 2b, respectively. Characteristic for 2a and 2b is a helically arrangement involving a crystallographic 21 screw axis of the HONCH-1-C6H3(CH2NMe2)2-3,5 and HONCH-4-C6H2(CH2NMe2)2-2,6-Br-1 building blocks.The reaction of 2b with equimolar amounts of [Pd2(dba)3 · CHCl3] (3) (dba = dibenzylidene acetone) or [Pt(tol)2(SEt2)]2 (4) (tol = 4-tolyl) gave by an oxidative addition of the C-Br unit to M coordination polymers with a [(HONCH-4-C6H2(CH2NMe2)2-2,6)MBr] repeating unit (5: M = Pd, 6: M = Pt). Complexes 5 and 6 are in the solid state linear hydrogen-bridged polymers with O-H?Br contacts between the oxime entities and the metal-bonded bromide.  相似文献   

17.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

18.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

19.
The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me3SiO)RR′SiLi (2a: R = Et, 2b: R = iPr, 2c: R = 2,4,6-Me3C6H2 (Mes); 2a-c: R′ = Ph; 2d: R = R′ = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-d) in the presence of excess lithium in a mixture of THF/diethyl ether/n-pentane at −110 °C was investigated.The trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a: R = Et, 1b: R = iPr, 1c: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me3SiO)RPhSiLi (2a-c). These siloxysilyllithiums 2 couple partially with more trimethylsiloxychlorosilanes 1 to produce the siloxydisilanes (Me3SiO)RPhSi-SiPhR(OSiMe3) (Ia-c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me3SiO)RPhSi-RPhSiLi (3a-c). The siloxydisilanes I are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2). In the case of the two trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a: R = Et, 3b: R = iPr) a reaction with more trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a, 1b) takes place under formation of siloxytrisilanes (Me3SiO)RPhSi-RPhSi-SiPhR(OSiMe3) (IIa: R = Et, IIb: R = iPr) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2a, 2b) and the trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a, 3b). The dimesityl-trimethylsiloxy-silyllithium (Me3SiO)Mes2SiLi (2d) was obtained directly by reaction of the trimethylsiloxychlorosilane (Me3SiO)Mes2SiCl (1d) and lithium without formation of the siloxydisilane intermediate. Both silyllithium compounds 2 and 3 were trapped with HMe2SiCl giving the products (Me3SiO)RR′Si-SiMe2H and (Me3SiO)RPhSi-RPhSi-SiMe2H.  相似文献   

20.
Reactions of [Ti(OPri)4] with various oximes, in anhydrous refluxing benzene yielded complexes of the type [Ti{OPri}4−n{L}n], where, n = 1-4 and LH = (CH3)2CNOH (1-4), C9H16CNOH (5-8) and C9H18CNOH (9-12). The compounds were characterized by elemental analyses, molecular weight measurements, FAB-mass, FT-IR and NMR (1H, 13C{1H}) spectral studies. The FAB-mass spectra of mono- (1), and di- (2), (6), (10) substituted products indicate their dimeric nature and that of tri- (3) and tetra- (4), (8) substituted derivatives suggest their monomeric nature. Crystal and molecular structure of [Ti{ONC10H16}4·2CH2Cl2] (8A) suggests that the oximato ligands bind the metal in a dihapto η2-(N, O) manner, leading to the formation of an eight coordinated species. Thermogravimetric curves of (3), (6) and (10) exhibit multi-step decomposition with the formation of TiO2 as the final product in each case, at 900 °C. Low temperature (∼600 °C) sol-gel transformations of (2), (3), (4), (6), (7) and (8) yielded nano-sized titania (a), (b), (c), (d), (e) and (f), respectively. Formation of anatase phase in all the titania samples was confirmed by powder XRD patterns, FT-IR and Raman spectroscopy. SEM images of (a), (b), (c), (d), (e) and (f) exhibit formation of nano-grains with agglomer like surface morphologies. Compositions of all the titania samples were investigated by EDX analyses. The absorption spectra of the two representative samples, (a) and (f) indicate an energy band gap of 3.17 eV and 3.75 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号