首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

2.
A series of N-(pyridin-2-yl)picolinamide derivatives was synthesized and characterized. Tetranickel complexes were obtained by stoichiometric reaction of NiBr2 and corresponding ligands, and characterized by elemental and spectroscopic analysis. Moreover, the coordination pattern of complex 3a was confirmed by single-crystal X-ray diffraction. In the structure, two ligands linked two nickel atoms to form a unit, and two units were bridged via μ3-OMe and μ2-Br to form a tetranickel cluster. These Ni(II) complexes were investigated in ethylene oligomerization and found to exhibit remarkable catalytic activities upon activation with MAO. Reaction conditions as well as ligand environment significantly affected the catalytic performance of the nickel complexes; the highest activity could be achieved to be 2.7 × 106 g mol−1 Ni h−1.  相似文献   

3.
A series of nickel(II) complexes ligated by tridentate ligands of 2-quinoxalinyl-6-iminopyridines was synthesized and characterized by elemental and spectroscopic analysis as well X-ray diffraction analysis. X-ray crystallographic analysis revealed the nickel complexes as five-coordinated distorted trigonal bipyramidal geometry. In the presence of Et2AlCl, these complexes displayed high catalytic activity for ethylene oligomerization and the dimmers were produced as main products. The nickel dibromide complexes exhibited relative higher activity than their dichloride analogues. Both elevation of the ethylene pressure and addition of auxiliary ligand have catalytic enhancement effects on all the complexes.  相似文献   

4.
A series of 2-(1H-benzimidazol-2-yl)-phenols and their nickel complexes have been synthesized and characterized by elemental and spectroscopic analysis. The molecular structures of ligand L4 and complex C5 were confirmed by X-ray diffraction analysis. X-ray crystallographic analysis revealed that complex C5 has a six-coordinated distorted octahedral geometry. Upon activation with Et2AlCl, these nickel(II) complexes showed good activity for ethylene oligomerization. When PPh3 was added as an auxiliary ligand to the catalytic system, an increased activity as high as 1.60 × 10g mol−1 (Ni) h−1 was observed. The ligand environment and reaction conditions remarkably affected the catalytic behavior of these nickel complexes.  相似文献   

5.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

6.
A series of tridentate NˆNˆN iron(II) and cobalt(II) complexes containing N-((pyridin-2-yl)methylene)-quinolin-8-amine derivatives were synthesized and characterized by elemental and spectroscopic analyses. The molecular structure of 1a was confirmed by X-ray diffraction analyses. On treatment with modified methylaluminoxane, these metal complexes exhibited good catalytic activities up to 2.8 × 106 g mol−1(Fe) h−1 for ethylene oligomerization, and butenes were the major products with nice selectivity for 1-C4. The steric and electronic effects on catalytic activities of metal complexes were carefully investigated as well as the influence of various reaction parameters. In the catalytic system, Fe(II) complexes performed better catalytic activities than their Co(II) analogues. With ligands having bulky substituents, the better catalytic activity was observed in catalytic system of Fe(II) complex, however, the lower catalytic activity was obtained in catalytic system of Co(II) complexes.  相似文献   

7.
Three new 20-electron bis-α-diimine nickel (II) complexes containing chloro-substituted ligands, bis{bis[N,N′-(3-chloro-2-methylphenyl)imino]-1,2-dimethylethane}dibromonickel 2a, bis{bis[N,N′-(3-chloro-2,6-dimethylphenyl)imino]-1,2-dimethylethane}dibromonickel 2b and bis{bis[N,N′-(4-chloro-2,6-dimethyl-phenyl)imino]-1,2-dimethylethane}dibromonickel 2c, were synthesized and characterized. The molecular structure of complex 2a was determined by X-ray crystallography. In the solid state, complex 2a has a pseudo-octahedral geometry about the nickel center, containing two α-diimine ligands in the pseudo-equatorial plane and two trans bromide ligands occupying the axial positions. These complexes, activated by diethylaluminum chloride (DEAC) were tested in the polymerization of ethylene under mild conditions. NMR analysis shows that highly branched polyethylenes are obtained using these bis-α-diimine nickel(II) complexes containing electron-withdrawing Cl groups in the aryl groups (e.g. 84 branches/1000 C, at 20 °C). The catalytic activity, polymer molecular weight and polymer degree of branching were significantly affected by the number of methyl substituents in the ortho-aryl position and the chlorine substituent position in the aryl rings of the coordinated α-diimine ligands.  相似文献   

8.
The 1-(6-(quinoxalin-2-yl)pyridin-2-yl)ethanone was synthesized in order to prepare a series of N-(1-(6-(quinoxalin-2-yl)pyridine-2-yl)ethylidene)benzenamines (L1-L7), which provided new alternative NNN tridentate ligands coordinating with iron(II) and cobalt(II) dichloride to form complexes of general formula LFeCl2 (1-7) and LCoCl2 (8-14). All organic compounds were fully characterized by NMR, IR spectroscopic and elemental analysis along with and magnetic susceptibilities and metal complexes were examined by IR spectroscopic and elemental analysis, while their molecular structures (L1, L4, 1, 4, 10, 13) were confirmed by single crystal X-ray diffraction analysis. Upon activation with methylaluminoxane (MAO), all iron complexes gave good catalytic activities for ethylene reactivity (oligomerization and polymerization), while their cobalt analogues showed moderate activities toward ethylene oligomerization with modified methylaluminoxane (MMAO). Various reaction parameters were investigated for better catalytic activities, the higher activities were observed at elevated ethylene pressure. The iron and cobalt complexes with para-methyl substituents of aryl group linked on imino group showed highest activity.  相似文献   

9.
A series of 2-(1-aryliminoethylidene)quinoline derivatives (L1-L9) and the nickel(II) dibromides (C1-C9) thereof, were synthesized and characterized. The molecular structures of C2 (R1 = Et, R2 = H, R = Me) and C9 (R1 = iPr, R2 = H, R = iPr) were confirmed as being distorted tetrahedral at nickel by single crystal X-ray diffraction. On treatment with diethylaluminium chloride (Et2AlCl) or ethylaluminum sesquichloride (EASC), these nickel pre-catalysts exhibited high activity for selective ethylene dimerization (0.89-3.29 × 106 g mol−1(Ni) h−1) at 20 °C under 10 atm of ethylene. The influence of the reaction parameters on the catalytic behaviour was investigated for these nickel systems, including variation of Al/Ni molar ratio and reaction temperature.  相似文献   

10.
The novel nickel (II) complexes (2a, 2b) bearing 1-pyridyl-(3-substituedimidazole-2-thione) ligands were synthesized by the reaction of the corresponding ligands with NiBr2(DME). 2a and 2b have been characterized by IR, NMR and elemental analysis. The nickel complexes show high catalytic activities for norbornene polymerization in the presence of MAO (methylaluminoxane), although low activities for ethylene polymerization.  相似文献   

11.
A series of nickel (II) complexes ligated by 2-imino-1,10-phenanthrolines were synthesized and characterized by elemental and spectroscopic analysis as well as by single-crystal X-ray crystallography. X-ray crystallographic analysis reveals complexes 3, 5, 7 and 11 as the five-coordinated distorted trigonal-bipyramidal geometry. Upon activation with Et2AlCl, these complexes exhibited considerably high activity for ethylene oligomerization (up to 3.76 × 107 g mol−1(Ni) h−1 for 12 with 10 equiv. of PPh3). The ligand environment and reaction conditions significantly affect the catalytic activity of their nickel complexes.  相似文献   

12.
The N,N'-(phenyl-2-pyridinylmethylene)-3,3',5,5'-tetramethylbenzidine and its dimeric Co(II) and Ni(II) complexes were synthesized.The organic compound was characterized by elemental analyses,IR and NMR spectra,while the bimetal complexes were determined by elemental analyses,IR spectra as well as the single-crystal X-ray diffraction.The nickel complex showed high activity for ethylene polymerization and its cobalt analogue showed negligible active in ethylene activation.  相似文献   

13.
The NNN-tridentate metal complexes, LMCl2 (M = Fe or Co; L represents a ligand of 2-(benzimidazol-2-yl)-1,10-phenanthrolines), were synthesized and fully characterized with spectroscopic and elemental analysis. The single-crystal X-ray crystallographic analyses revealed complex 1a with a distorted octahedron geometry due to incorporating one methanol molecule, and complexes 5a and 9b with a distorted trigonal-bipyramidal geometry. Upon activation with modified methylaluminoxane (MMAO), these complexes showed good to high catalytic activities toward ethylene oligomerization. The detailed investigations were carried out to disclose the influences of various reaction conditions and nature of ligands on their performing activities of metal complexes.  相似文献   

14.
孙文华 《高分子科学》2013,31(4):601-609
 A series of half-titanocene chloride 2-(benzimidazol-2-yl)quinolin-8-olates C1-C6 were synthesized by treating the lithium salts of the ligand with CpTiCl3. All the complexes were characterized by 1H-NMR, 13C-NMR and elemental analyses, and the crystal structure of C3 and C6 was measured by X-ray. These half-titanocene complexes showed moderate catalytic activities toward ethylene polymerization (up to 1840 kg·mol-1(Ti)·h-1) when activated with MMAO, affording the high molecular weight polymers. And they also exhibited good activity for copolymerization of ethylene and α-olefin with low content of co-monomer.  相似文献   

15.
孙文华 《高分子科学》2013,31(5):769-777
A series of nickel halides bearing 2,4-di-t-butyl-6-(quinolin-8-yliminomethyl) phenolate ligands was synthesized and characterized by IR spectroscopy and elemental analysis.Molecular structures of C1(R = H,X = Br) and C2(R = H,X = Cl) were further confirmed by single-crystal X-ray crystallographic studies,and revealed a distorted square planar geometry at nickel.Upon activation with diethylaluminum chloride(Et 2 AlCl),all nickel pre-catalysts displayed good catalytic activity [up to 9.3 × 10 5 g mol 1(Ni) h 1 ] for ethylene oligomerization with major dimerization.In the presence of methylaluminoxane(MAO),the nickel complex C1 was capable of ethylene polymerization under 3 MPa,and produced polyethylene products with narrow polydispersity(1.16 1.73) and molecular weights in the range of 2.6 4.95 kg/mol.  相似文献   

16.
A series of 2-(methyl-substituted-1H-benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridines (L1–L6) were synthesized and used as N^N^N tridentate ligands for their nickel complexes (C1–C12). All ligands were fully characterized by elemental, NMR and IR spectroscopic analyses, while their nickel complexes were characterized by elemental and IR spectroscopic analyses. The single-crystal X-ray diffraction reveals that the complexes C1, C3 and C9 have distorted octahedral geometry around the Ni center. All nickel complexes, activated with Et2AlCl, exhibit good catalytic activities toward ethylene oligomerization with major dimerization.  相似文献   

17.
A series of iron(III) complexes ligated by 2-(benzimidazole)-6-(1-aryliminoethyl)pyridines was synthesized and examined by 1H NMR, ESI-MS, IR spectroscopic, elemental analysis and X-ray photoelectron spectroscopy (XPS). Activated with methylaluminoxane (MAO), all ferric complexes exhibited good activities (up to 5.38 × 106 g mol−1(Fe) h−1) of ethylene oligomerization and polymerization, and resultant oligomers and polyethylene waxes showed high α-olefin feature, meanwhile the distribution of oligomers mostly resembled Schulz-Flory rules. The various reaction parameters were investigated in detail, and the less bulky and electron-withdrawing substituents of ligands could enhance the catalytic activities of their ferric complexes. The observations explain the cause for unstable activities performed by stored iron(II) complexes.  相似文献   

18.
Two ethylene-nickel(0) complexes, viz., [1,2-bis(diphenylphosphino)ethane]-(ethylene)nickel(0) and bis(triphenylphosphine)(ethylene)nickel(0) have been used in a comparison of their catalytic activities in hydrosilylation reactions with those of the corresponding nickel(II) complexes, viz., dichloro [1,2-bis(diphenylphosphino)-ethane]nickel(II) and dichlorobis(triphenylphosphine)nickel(II). The reaction profiles are similar, apart from a significant difference in the induction period; the nickel(II) catalysts requiring a substantially longer time. A mechanism involving a nickel(0) species is proposed for the hydrosilylation.The interchange of hydrogen and chlorine on silicon accompanying the hydrosilylation is related to a high electron density at the nickel atom bearing the phosphine, olefin, and silicon hydride ligands.  相似文献   

19.
The synthesis of N-(1-(3,5-dimethylpyrazol-1-yl)ethylidene)-2,6-diisopropylaniline (1) and N-(1-(indazol-2-yl)ethylidene)-2,6-diisopropylaniline (2) allowed access to new transition metal complexes. When reacted with dibromo(2,2′-dimethoxyethylether)nickel(II) the complexes [NiBr2{N-(1-(3,5-dimethylpyrazol-1-yl)ethylidene)-2,6-diisopropylaniline}] (3) and [Ni2Br2(μ-Br)2{N-(1-(indazol-1-yl)ethylidene)-2,6-diisopropylaniline}2] (4) are yielded, respectively. The addition of MAO generates catalytically active species for the homopolymerization of ethylene. The polymer products were low molecular weight (3-6 K) and a monomodal molecular weight distribution, consistent with the presence of a single active site. In addition, the catalyst was found to efficiently oligomerize higher olefins to high molecular weights with narrow PDIs.  相似文献   

20.
A series of Ni(II) complexes 4a-f ligated by the unsymmetrical phosphino-oxazolines (PHOX) were synthesized and characterized by elemental analysis and IR spectroscopy, and the structures of complexes 4c-4e were confirmed by the X-ray crystallographic analysis. All derivatives showed distorted tetrahedron geometry by the nickel center and coordinative atoms. Upon activation with methylaluminoxane (MAO) or Et2AlCl, these complexes exhibited considerable to high activity of ethylene oligomerization. The ligands environments and reaction conditions significantly affect their catalytic activities, while the highest oligomerization activity (up to 1.18 × 106 g · mol−1(Ni) · h−1) was observed for 4d at 20 atm of ethylene. Incorporation of 2-4 equivalents of PPh3 as auxiliary ligands in the 4a-f/MAO catalytic systems led to higher activity and longer catalytic lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号