首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Four metallodithiolene complexes[4,8-bis(octyloxy)-1,3,5,7-tetrathia]?di[1,1′-bis(diphenylphosphino)ferrocene?palladium(II)](3),[4,8-bis(octyloxy)-1,3,5,7-tetrathia]di[1,3-bis(diphenylphosphino)propane?nickel(II)](4),[4,8-bis(octyloxy)-1,3,5,7-tetra-thia]?[1,1′-bis(diphenylphosphino)ferrocene?palladium(II)]?[1,3-bis(diphenylphosphino)propane·nickel(II)](5)and di[4,8-bis(octyloxy)-1,3,5,7-tetrathia]?[1,1′-bis(diphenylphosphino)ferrocene?palladium(II)]?nickel(II)(6)were synthesized and the near-infrared(NIR)electrochromic properties were studied.The spectroelectrochemical spectra and the electrochromic parameters such as optical contrast,switching time,optical density change,electrochromic efficiency and optical attenuation of complexes 3–6 were investigated in detail.The symmetric binuclear complex 4 showed relatively high electrochromic efficiency of63.0 and 75.4 cm~2/C both in the two oxidation states.The complexes exhibited excellent electroactive/electrochromic stability characterized by chronoamperometry(4000 cyclic switches).  相似文献   

2.
Bis(triphenylphosphine)nickel(II) chloride reacts with E,E,-1,4-dilithio-1,2,3,4-tetraphenylbutadiene to yield a solution of a 2,3,4,5-tetraphenylnickelole complex. This compound reacts promptly with CO to yield tetracyclone, with dimethyl acetylenedicarboxylate to form dimethyl tetraphenylphthalate and catalytically with diphenylacetylene to form hexaphenylbenzene. A similar treatment of (1,2-bis(diphenylphosphino)ethane)nickel(II) chloride with the lithium reagent led to the isolation of (1,2-bis(diphenylphosphino)ethane)bis(2,3,4,5-tetraphenylnickelole), which likewise reacts with dimethyl acetylenedicarboxylate to yield dimethyl tetraphenylphthalate. These results support the interpretation that nickeloles are reactive intermediates in the cyclotrimerization of alkynes by nickel(0) catalysts.  相似文献   

3.
The novel sixteen-electron complex [Ir(Oq)(COD)] (Oq = 8-oxyquinolate; COD = 1,5-cyclooctadiene) adds monodentate phosphines, phosphites or activated olefins irreversibly to give pentacoordinate iridium(I) complexes of the type [Ir(Oq)(COD)L] (L = PPh3, P(OPh)3, maleic anhydride or tetracyano-ethylene). Reaction of [Ir(Oq)(COD)] with some diphosphines leads to substitution products of the general formula [Ir(Oq)(diphos)] (diphos = 1,2-bis(diphenylphosphino)ethane or cis-1,2-bis(diphenylphosphino)ethylene). Carbon monoxide displaces the COD group from the complexes giving either [Ir(Oq)(CO)2] or [Ir(Oq)(CO)L], and the latter undergo oxidative addition reactions with SnCl4, Me3SiCl, Me3SnCl, MeI, allylbromide, PhCOCl, MeCOCl, Cl2, Br2, TlCl3 and HCl leading to novel iridium(III) complexes.  相似文献   

4.
This study presents the syntheses and characterization of 2-mercaptopyridine (pyS) complexes containing ruthenium(II) with the following general formula [Ru(pyS)2(P–P)], P–P = (c-dppen) = cis-1,2-bis(diphenylphosphino)ethylene) (1); (dppe) = 1,2-bis(diphenylphosphino)ethane (2); (dppp) = 1,3-bis(diphenylphosphino)propane (3) and (dppb) = 1,4-bis(diphenylphosphino)butane (4). The complexes were synthesized from the mer- or fac-[RuCl3(NO)(P–P)] precursors in the presence of triethylamine in methanol solution with dependence of the product on the P–P ligand. The reaction of pyS with a ruthenium complex containing a bulky aromatic diphosphine dppb disclosed a major product with a dangling coordinated dppbO-P, the [Ru(pyS)2(NO)(η1-dppbO-P)]PF6(5). In addition, this work also presents and discusses the spectroscopic and electrochemical behavior of 15, and report the X-ray structures for 1 and 5.  相似文献   

5.
We describe novel optically active double helices consisting of complementary strands stabilized by amidinium-carboxylate salt bridges. The m-terphenyl groups of each strand are joined by trans-Pt(II) acetylide complexes with pendant PPh(3) ligands as the surrogate linker, which converts to cis counterparts by a ligand exchange reaction with cis-1,2-bis(diphenylphosphino)ethylene, resulting in the formation of double helices with different structures. Subsequent iodine-promoted reductive elimination on the Pt(II) atoms generates the fully organic, enantiomerically pure double helices. [structure: see text]  相似文献   

6.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

7.
Bis(dinitrogen)bis[1,2-bis(diphenylphosphino)ethane]molybdenum reacts with chlorobenzene to form molybdenum chloro complexes and phenylated organic products. Benzene, biphenyl, o-, m-, p-chlorobiphenyl, a dihydro derivative of o-chlorobiphenyl, triphenylphosphine and diphenylvinylphosphine were formed. The isomer distribution of the chlorobiphenyls is close to that obtained by decomposition of 0.02 M benzoyl peroxide in chlorobenzene under dinitrogen. The cleavage of the PhCl bond induced by the molybdenum-dinitrogen complex appears to give rise to the same homolytic reaction pattern. Phenylation of anisole and of triethyl phosphite has also been achieved with the same reagent.  相似文献   

8.
para-Enriched hydrogen is converted into the ortho-para equilibrium mixture by tris(triphenylphosphine)rhodium chloride in toluene solution. The rotational Raman effect can be used to show that this equilibration occurs during the course of hydrogenation of cyclohexene by the above catalyst. The methanol solvate formed by reduction of 1,4-bis(diphenylphosphino)butanebicyclo[2.2.1] heptadienerhodium tetrafluoroborate also catalyses the ortho-para equilibration of hydrogen, in common with related cationic rhodium complexes. No equilibration occurs, however, during the course of hydrogenation of (Z)-α-benzamidocinnamic acid by cationic chelate rhodium complexes, including that derived from the chiral ligand (R,R)-1,2-bis(o-methoxyphenylphenyl)ethane (DIPAMP), thus demonstrating that addition of hydrogen to rhodium is irreversible.  相似文献   

9.
The hydrosilylation of olefins catalyzed by nickel(II) chloride complexed with 1,2-bis(dimethylphosphino)-1,2-dicarba-closo-dodecaborane produces terminal and internal adducts in comparable amounts. This unusual feature of the reaction is explained in terms of the electron-accepting nature of the carboranyl group.  相似文献   

10.
Dichloro[1,1′-bis(diphenylphosphino)ferrocene]nickel(II) was found to be an effective catalyst for the reaction of crotylmagnesium bromide with hydrosilanes to give (E)-crotylsilanes selectively.  相似文献   

11.
New trans-disubstituted macrocyclic ligands, 1,8-[N,N-bis(3-formyl-12-hydroxy-5-methyl)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L1), 1,8-[N,N-bis(3-formyl-12-hydroxy-5-bromo)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L2), N,N-bis[1,8-dibenzoyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L3), N,N-bis[1,8-(2-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L4), and N,N-bis[1,8-(4-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L5) were synthesized. The ligands were characterized by elemental analysis, FT IR, 1H NMR and mass spectrometry studies. The crystal structure of L1 is also reported. The copper(II) and nickel(II) complexes of these ligands were prepared and characterized by elemental analysis, FT IR, UV-Vis and mass spectral studies. The cyclic voltammogram of the complexes of ligand L1-3 show one-electron quasi-reversible reduction wave in the region −0.65 to −1.13 V, whereas that of L4 and L5 show two quasi-reversible reduction peaks. Nickel(II) complexes show one electron quasi-reversible oxidation wave at a positive potential in the range +0.95 to +1.06 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff 1.70-1.73 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. The ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.  相似文献   

12.
Cis-diaquobis{di-(2-pyridyl)-N-ethylimine}nickel(II) chloride (2) was obtained from the reaction of di-(2-pyridyl)-N-ethylimine (1) and [NiCl2dppe] [dppe = cis-1,2-bis(diphenylphosphino)ethylene] in a 2:1 ratio in hot acetonitrile. Cis-dichloro{di-(2-pyridyl)-N-ethylimine}palladium(II) (3) and cis-dichloro{di-(2-pyridyl)-N-ethylimine}platinum(II) (4) complexes were obtained from the reaction of MCl2 (M = Pd, Pt) and (1) in equimolar ratio in hot acetonitrile. Compounds 1–4 were characterized by IR spectroscopy, elemental analysis, and mass spectrometry; the complexes 3 and 4 were characterized in solution by NMR. In addition, solid state structures of compounds 14 were determined using single crystal X-ray diffraction analyses. X-ray diffraction data of the complexes 3 and 4 showed a distorted square planar local geometry at palladium and platinum atoms with the chlorine atoms in a cis-coordination; in 2 a local octahedral geometry at nickel atom was observed. Complexes 3 and 4 are arranged as dimers with a M?M distance of 3.4567(4) Å (M = Pd) and 3.4221(4) Å (M = Pt), respectively; 2 consists of units linked by intermolecular hydrogen bonding.  相似文献   

13.
Treatment of the osmium(II) hydrides CpOs(P-P)H (Cp = pentamethylcyclopentadienyl) with methyl trifluoromethanesulfonate (MeOTf) affords osmium(II) triflate complexes with the general formula CpOs(P-P)(OTf), where P-P = bis(dimethylphosphino)methane (dmpm), bis(diphenylphosphino)methane (dppm), or 1,2-bis(dimethylphosphino)ethane (dmpe). The aqua complexes [CpOs(dmpm)(OH2)][OTf] and [CpOs(dppm)(OH2)][OTf] are synthesized by the addition of water to the corresponding anhydrous triflates. The complexes CpOs(dppm)(OTf) and [CpOs(dmpm)(OH2)][OTf] have been examined crystallographically, and all compounds have been characterized by NMR spectroscopy.  相似文献   

14.
Reactions of alkyl halides with arylmagnesium bromides in the presence of cobalt(II)(diphosphine) complexes are discussed. Treatment of 1-bromooctane with phenylmagnesium bromide with the aid of a catalytic amount of CoCl2(dppp) [DPPP=1,3-bis(diphenylphosphino)propane] yielded octylbenzene in good yield. The reaction mechanism would include single electron transfer from an electron-rich cobalt complex to alkyl halide to generate the corresponding alkyl radical. The mechanism was justified by CoCl2(dppe)-catalyzed [DPPE=1,2-bis(diphenylphosphino)ethane] sequential radical cyclization/cross-coupling reactions of 6-halo-1-hexene derivatives that yielded benzyl-substituted cyclopentane skeletons.  相似文献   

15.
The interaction of Ni(II) bis-tetrafluoroborate complexes [Ni(Dppe)2](BF4)2 and [Ni(CH3CN)6](BF4)2 (where Dppe = 1,2-bis(diphenylphosphino)ethane)) with Ni(0) phosphine complexes Ni(Dppe)2 and Ni(PPh3)4 in 1 : 1 mixture of toluene-acetonitrile was studied by the EPR method. The counter-disproportionation was shown to occur in a solution between the cationic Ni(II) complexes and the Ni(0) complexes to give Ni(I) complexes almost in quantitative amounts. The structures of the cationic Ni(I) complexes obtained were found to depend on both the solvent nature and the presence of a free phosphine in a solution.  相似文献   

16.
A series of phosphine-diphenylphosphenium donor-acceptor cationic complexes have been synthesized and comprehensively characterized (phosphine = diphenylchlorophosphine, triphenylphosphine, trimethylphosphine, and tricyclohexylphosphine). The complexes involve homoatomic P-P coordinate bonds that are susceptible to ligand exchange reactions highlighting a versatile new synthetic method for P-P bond formation. Phosphenium complexes of 1,2-bis(diphenylphosphino)benzene and 1,2-bis(tert-butylphosphino)benzene undergo unusual rearrangements to give a "segregated" diphosphine-phosphonium cation and a cyclic di(phosphino)phosphonium cation, respectively. The rearrangement products reveal the kinetic stability of the phosphine-phosphenium bonding arrangement.  相似文献   

17.
A series of unsymmetric bimetal(II) (Fe, Co and Ni) complexes ligated by 2-methyl-2,4-bis(6-iminopyridin-2-yl)-1H-1,5-benzodiazepines were synthesized and characterized by IR spectra and elemental analysis, while a representative nickel(II) complex (5a) was determined by single-crystal X-ray crystallography. These iron(II) complexes were found to exhibit good activities for ethylene oligomerization and polymerization in the presence of MMAO and afforded α-olefins in high selectivity, and the composition of oligomers followed the Schluz-Flory distribution. The nickel(II) complexes mainly dimerize ethylene with considerable activity. The influences of coordinative ligands and reaction parameters were fully investigated on the catalytic activity and properties of these complexes.  相似文献   

18.
Spectral and kinetic parameters were studied for phosphine-bipyridyl ruthenium(II) complexes, namely, cis-[Ru(Bipy)2(PPh3)X](BF4), cis-[Ru(Bipy)(Dppe)X2], and cis-[Ru(Bipy)(Dppene)X2] (where Bipy is 2,2"-bipyridyl, PPh3is triphenylphosphine, Dppe is 1,2-bis(diphenylphosphino)ethane, and Dppene iscis-1,2-bis(diphenylphosphino)ethylene; X = CN, NO2 ), in the frozen (77 K) alcohol glasses (EtOH–MeOH, 4 : 1). The energies of the singlet and triplet metal-to-ligand charge transfer states d(Ru) *(Bipy) were found to increase in the order [Ru(Bipy)2X2] < [Ru(Bipy)2(PPh3)X]+< [Ru(Bipy)(Dppe)X2] < [Ru(Bipy)(Dppene)X2]. The luminescence quantum yields and the rate constants of the nonradiative deactivation of the lowest excited state 3MLCT increase in the same order.  相似文献   

19.
The monoselenide of 1,8-bis(diphenylphosphino)naphthalene reacts with (tht)AuCl to give the gold(III) system [(dppnAuSe)(2)](2+) 2Cl(-) (1); bromination of the bromogold(I) complex of the 1,2-bis(diphenylphosphino)methane monosulfide ligand furnishes the tribromide salt (2a) of a gold(III) cation [LAuBr(2)](+); bromination of the bromogold(I) complex of the 1,2-bis(diphenylphosphino)benzene monosulfide ligand leads to a mixed bromide/tetrabromoaurate salt (3) of a heterocyclic dication involving a [-PPh(2)-S-PPh(2)-](2+) moiety; analogous reactions of triphenylphosphine sulfide and selenide complexes lead to tetrabromoaurate salts (4a and 4b) of the (bromochalcogeno)phosphonium cations Ph(3)PEBr(+).  相似文献   

20.
A series of cationic rhodium(I) complexes [Rh(diene)(N^N)][BF4] (diene = 1,5-cyclooctadiene (cod), norbornadiene (nbd), tetrafluorobenzobarralene (tfb)), containing the optically pure bis(sulfoximine) ligand 1,2-bis(S-methyl-S-phenylsulfonimidoyl)benzene, have been synthesized and fully characterized. The structure of the R,R enantiomer of the ligand, and that of its cyclooctadiene–Rh(I) complex, were confirmed by means of single-crystal X-ray diffraction techniques. Studies on the catalytic activity of these complexes in acetophenone hydrosilylation and dimethyl itaconate hydrogenation are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号