首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.  相似文献   

2.
We present a scheme for implementing robust quantum gates in decoherence-free subspaces (DFSs) with double-dot spin qubits. Through the resonator-assisted interaction, the controllable interqubit couplings can be achieved only by adjusting the qubit transition frequencies. We construct a set of logic gates on the DFS-encoded qubits to eliminate the collective noise effects, and thus the gate fidelities can be enhanced remarkably. This proposal may offer a potential approach to realize the robust quantum computing with spin qubits.  相似文献   

3.
We propose and demonstrate a scheme for boosting the efficiency of entanglement distribution based on a decoherence-free subspace over lossy quantum channels. By using backward propagation of a coherent light, our scheme achieves an entanglement-sharing rate that is proportional to the transmittance T of the quantum channel in spite of encoding qubits in multipartite systems for the decoherence-free subspace. We experimentally show that highly entangled states, which can violate the Clauser-Horne-Shimony-Holt inequality, are distributed at a rate proportional to T.  相似文献   

4.
We report the experimental demonstration of a controlled-NOT (CNOT) quantum logic gate between motional and internal-state qubits of a single ion where, as opposed to previously demonstrated gates, the conditional dynamics depends on the extent of the ion's wave packet. Advantages of this CNOT gate over one demonstrated previously are its immunity from Stark shifts due to off-resonant couplings and the fact that an auxiliary internal level is not required. We characterize the gate logic through measurements of the postgate ion state populations for both logic basis and superposition input states, and we demonstrate the gate coherence via an interferometric measurement.  相似文献   

5.
We propose a new and feasible scheme to implement quantum gates in decoherence-free subspaces (DFSs) with Josephson charge qubits situated in a circuit QED architecture. Based on the resonator-assisted interaction, the controllable interqubit couplings occur only by tuning the individual flux biases, by which we obtain the DFS-encoded universal quantum gates. Compared with the non-DFS situation, we numerically consider the robustness of the DFS-encoded scheme that can be insensitive to the collective noises. Thus the protocol may perform the fault-tolerant quantum computing with Josephson charge qubits.  相似文献   

6.
The effectiveness of decoherence suppression schemes is explored using quantum bits (qubits) stored in Li np Rydberg states. Following laser excitation, pulsed electric fields coherently control the electronic spin-orbit coupling, facilitating qubit creation, manipulation, and measurement. Spin-orbit coupling creates an approximate decoherence-free subspace for extending qubit storage times. However, sequences of fast NOT operations are found to be substantially more effective for preserving coherence.  相似文献   

7.
We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.  相似文献   

8.
An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.  相似文献   

9.
We propose a new approach to the implementation of quantum gates in which decoherence during the gate operations is strongly reduced. This is achieved by making use of an environment induced quantum Zeno effect that confines the dynamics effectively to a decoherence-free subspace.  相似文献   

10.
The logical gates using quantum measurement as a primitive of quantum computation are considered. It is found that these gates achieved with EPR, GHZ and W entangled states have the same structure, allow encoding the classical information into states of quantum system and can perform any calculations. A particular case of decoherence-free W states is discussed as in this very case the logical gate is decoherence-free.  相似文献   

11.
We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a tunable qubit-resonator coupling strength g. This coupling can be tuned from zero to values that are comparable with other superconducting qubits. At g = 0, the qubit is in a decoherence-free subspace with respect to spontaneous emission induced by the Purcell effect. Furthermore, we show that in this decoherence-free subspace, the state of the qubit can still be measured by either a dispersive shift on the resonance frequency of the resonator or by a cycling-type measurement.  相似文献   

12.
Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing n SWAP gates simultaneously. In our scheme, the SQUID works in the charge regime, the quantum logic gate operations are performed in the subspace spanned by two charge states |0〉 and |1〉. The interaction between the qubits and the cavity field can be achieved by turning the gate voltage and the external flux. Especially, the gate operation time is independent of the number of the qubits, and the gate operation is insensitive to the initial state of the cavity mode. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting the frequency of the cavity mode, and the operation time satisfies the requirement for the designed experiment by choosing suitable detuning and the quality factor of the cavity. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.  相似文献   

13.
Taking into account the main noises in superconducting charge qubits (SCQs), we propose a feasible scheme to realize quantum computing (QC) in a specially-designed decoherence-free subspace (DFS). In our scheme two physical qubits are connected with a common inductance to form a strong coupling subsystem, which acts as a logical qubit. Benefiting from the well-designed DFS, our scheme is helpful to suppress certain decoherence effects.  相似文献   

14.
邵晓强  陈丽  张寿  赵永芳 《中国物理 B》2009,18(12):5161-5167
We present a scheme for implementing a three-qubit phase gate via manipulating rf superconducting quantum interference device (SQUID) qubits in the decoherence-free subspace with respect to cavity decay. Through appropriate changes of the coupling constants between rf SQUIDs and cavity, the scheme can be realized only in one step. A high fidelity is obtained even in the presence of decoherence.  相似文献   

15.
A family of quantum logic gates is proposed via superconducting (SC) qubits coupled to a SC-cavity. The Hamiltonian for SC-charge qubits inside a single mode cavity is considered. Three- and two-qubit operations are generated by applying a classical magnetic field with the flux. Therefore, a number of quantum logic gates are realized. Numerical simulations and calculation of the fidelity are used to prove the success of these operations for these gates.  相似文献   

16.
We theoretically propose a feasible scheme to perform quantum computing in decoherence-free subspaces (DFSs) with Cooper-pair box (CPB) qubits arrayed in a circuit QED architecture. Based on the cavity-bus assisted interaction, the selective and controllable interqubit couplings occur only by adjusting the individual gate pulses, by which we obtain the scalable DFS-encoded universal quantum gates to resist certain collective noises. Further analysis shows the protocol may implement the scalable fault-tolerant quantum computing with current experimental means.  相似文献   

17.
Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum information processing. However, photons, one of the best candidates for qubits, suffer from a lack of strong nonlinear coupling, which is required for quantum logic operations. Here we show how this drawback can be overcome by reporting a proof-of-principle experimental demonstration of a nondestructive controlled-NOT (CNOT) gate for two independent photons using only linear optical elements in conjunction with single-photon sources and conditional dynamics. Moreover, we exploit the CNOT gate to discriminate all four Bell states in a teleportation experiment.  相似文献   

18.
We propose to use a collective excitation blockade mechanism to identify errors that occur due to disturbances of single atoms in ensemble quantum registers where qubits are stored in the collective population of different internal atomic states. A simple error correction procedure and a simple decoherence-free encoding of ensemble qubits in the hyperfine states of alkali-metal atoms are presented.  相似文献   

19.
We provide a method for constructing a set of four-photon states suitable for quantum communication applications. Among these states is a set of concatenated quantum code states that span a decoherence-free subspace that is robust under collective-local as well as global dephasing noise. This method requires only the use of spontaneous parametric down-conversion, quantum state post-selection, and linear optics. In particular, we show how this method can be used to produce all sixteen elements of the second-order Bell gem , which includes these codes states and is an orthonormal basis for the Hilbert space of four qubits composed entirely of states that are fully entangled under the four-tangle measure.  相似文献   

20.
We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be+ atomic ion qubits at a magnetic field B approximately = 0.01194 T. We observe that the single physical qubit memory coherence time is greater than 10 s, an improvement of approximately 5 orders of magnitude from previous experiments with 9Be+. We also observe long coherence times of decoherence-free subspace logical qubits comprising two entangled physical qubits and discuss the merits of each type of qubit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号