首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basilar-membrane nonlinearity estimated by pulsation threshold   总被引:3,自引:0,他引:3  
The pulsation threshold technique was used to estimate the basilar-membrane (BM) response to a tone at characteristic frequency (CF). A pure-tone signal was alternated with a pure-tone masker. The frequency of the masker was 0.6 times that of the signal. For signal levels from around 20 dB above absolute threshold to 85 dB SPL, the masker level was varied to find the level at which a transition occurred between the signal being perceived as "pulsed" or "continuous" (the pulsation threshold). The transition is assumed to occur when the masker excitation is somewhat greater than the signal excitation at the place on the BM tuned to the signal. If it is assumed further that the response at this place to the lower-frequency masker is linear, then the shape of the masking function provides an estimate of the BM response to the signal. Signal frequencies of 0.25, 0.5, 1, 2, 4, and 8 kHz were tested. The mean slopes of the masking functions for signal levels between 50 and 80 dB SPL were 0.76, 0.50, 0.34, 0.32, 0.35, and 0.41, respectively. The results suggest that compression on the BM increases between CFs of 0.25 and 1 kHz and is roughly constant for frequencies of 1 kHz and above. Despite requiring a subjective criterion, the pulsation threshold measurements had a reasonably low variability. However, the estimated compression was less than in an earlier study using forward masking. The smaller amount of compression observed here may be due to the effects of off-frequency listening.  相似文献   

2.
Low-frequency stimuli (40- to 1000-Hz tones) have been used to correlate the motion of the 8-to 9-kHz place of the chinchilla basilar membrane with the cochlear microphonics recorded at the round window and with the responses of auditory nerve fibers with appropriate characteristic frequency. At the lowest stimulus frequencies, maximum displacement of the basilar membrane toward scala tympani occurs in near synchrony with maximum rarefaction at the eardrum and maximum negativity at the round window; at higher frequencies, the mechanical and microphonic response phases progressively lag rarefaction, reaching - 240 deg at 1000 Hz. At most frequencies (40-1000 Hz) near-threshold neural responses, once corrected for neural travel-time and synaptic delays, somewhat lead (by some 40 deg) maximal scala tympani displacement and maximal negativity of the round window microphonics. The variation of sensitivity with frequency is similar for basilar membrane displacement and microphonic responses: Under open-bulla conditions, sensitivity is constant for frequencies between 100 and 1000 Hz; below 100 Hz, sensitivity decreases at rates close to 12 dB/oct toward lower frequencies. Neural response sensitivity matches BM displacement more closely than BM velocity.  相似文献   

3.
The physiological basis of auditory frequency selectivity was investigated by recording the temporal response patterns of single cochlear-nerve fibers in the cat. The characteristic frequency and sharpness of tuning was determined for low-frequency cochlear-nerve fibers with two-tone signals whose frequency components were of equal amplitude and starting phase. The measures were compared with those obtained with sinusoidal signals. The two-tone characteristic frequency (2TCF) is defined as the arithmetic-center frequency at which the fiber is synchronized to both signal frequencies in equal measure. The 2TCF closely corresponds to the characteristic frequency as determined by the frequency threshold curve. Moreover, the 2TCF changes relatively little (2%-12%) over a 60-dB intensity range. The 2TCF generally shifts upward with increasing intensity for cochlear-nerve fibers tuned to frequencies below 1 kHz and shifts downward as a function of intensity for units with characteristic frequencies (CF's) above 1 kHz. The shifts in the 2TCF are considerably smaller than those observed with sinusoidal signals. Filter functions were derived from the synchronization pattern to the two-tone signal by varying the frequency of one of the components over the fiber's response area while maintaining the other component at the 2TCF. The frequency selectivity of the two-tone filter function was determined by dividing the vector strength to the variable frequency signal by the vector strength to the CF tone. The filter function was measured 10 dB down from the peak (2T Q 10 dB) and compared with the Q 10 dB of the frequency threshold curve. The correlation between the two measures of frequency selectivity was 0.72. The 2T Q 10 dB does change as a function of intensity. The magnitude and direction of the change is dependent on the sharpness of tuning at low and moderate sound-pressure levels (SPL's). The selectivity of the more sharply tuned fibers (2T Q 10 dB greater than 3) diminishes at intensities above 60 dB SPL. However, the broadening of selectivity is relatively small in comparison to discharge rate-based measures of selectivity. The selectivity of the more broadly tuned units remains unchanged or improves slightly at similar intensity levels. The present data indicate that the frequency selectivity and tuning of low-frequency cochlear-nerve fibers are relatively stable over a 60-dB range of SPL's when measured in terms of their temporal discharge properties.  相似文献   

4.
Coherent-reflection theory explains the generation of stimulus-frequency and transient-evoked otoacoustic emissions by showing how they emerge from the coherent "backscattering" of forward-traveling waves by mechanical irregularities in the cochlear partition. Recent published measurements of stimulus-frequency otoacoustic emissions (SFOAEs) and estimates of near-threshold basilar-membrane (BM) responses derived from Wiener-kernel analysis of auditory-nerve responses allow for comprehensive tests of the theory in chinchilla. Model predictions are based on (1) an approximate analytic expression for the SFOAE signal in terms of the BM traveling wave and its complex wave number, (2) an inversion procedure that derives the wave number from BM traveling waves, and (3) estimates of BM traveling waves obtained from the Wiener-kernel data and local scaling assumptions. At frequencies above 4 kHz, predicted median SFOAE phase-gradient delays and the general shapes of SFOAE magnitude-versus-frequency curves are in excellent agreement with the measurements. At frequencies below 4 kHz, both the magnitude and the phase of chinchilla SFOAEs show strong evidence of interference between short- and long-latency components. Approximate unmixing of these components, and association of the long-latency component with the predicted SFOAE, yields close agreement throughout the cochlea. Possible candidates for the short-latency SFOAE component, including wave-fixed distortion, are considered. Both empirical and predicted delay ratios (long-latency SFOAE delay/BM delay) are significantly less than 2 but greater than 1. Although these delay ratios contradict models in which SFOAE generators couple primarily into cochlear compression waves, they are consistent with the notion that forward and reverse energy propagation in the cochlea occurs predominantly by means of traveling pressure-difference waves. The compelling overall agreement between measured and predicted delays suggests that the coherent-reflection model captures the dominant mechanisms responsible for the generation of reflection-source otoacoustic emissions.  相似文献   

5.
One way medial efferents are thought to inhibit responses of auditory-nerve fibers (ANFs) is by reducing the gain of the cochlear amplifier thereby reducing motion of the basilar membrane. If this is the only mechanism of medial efferent inhibition, then medial efferents would not be expected to inhibit responses where the cochlear amplifier has little effect, i.e., at sound frequencies in the tails of tuning curves. Inhibition at tail frequencies was tested for by obtaining randomized rate-level functions from cat ANFs with high characteristic frequencies (CF > or = 5 kHz), stimulated with tones two or more octaves below CF. It was found that electrical stimulation of medial efferents can indeed inhibit ANF responses to tail-frequency tones. The amplitude of efferent inhibition depended on both sound level (largest near to threshold) and frequency (largest two to three octaves below CF). On average, inhibition of high-CF ANFs responding to 1 kHz tones was around 5 dB. Although an efferent reduction of basilar-membrane motion cannot be ruled out as the mechanism producing the inhibition of ANF responses to tail frequency tones, it seems more likely that efferents produce this effect by changing the micromechanics of the cochlear partition.  相似文献   

6.
Measurements of group delay were made extracellularly from spiral ganglion cells in the 3.7 to 5.0-mm region of the guinea pig cochlea, using sinusoidally amplitude modulated tones with constant modulating frequency (100 Hz) and depth of modulation (0.19). Threshold cochlear tuning was accompanied by frequency-dependent group delays. The group delay on the low-frequency tail was independent of carrier frequency; the interunit variation was 0.28-1.28 ms. The difference in group delay between CF and the low-frequency tail decreased as the CF threshold increased (-0.09 +/- 0.02 ms per 10 dB, beginning at 0.62 +/- 0.07 ms at 0 dB SPL). The group delay decreased above CF; at the units' maximum frequency it was less than the low-frequency tail value, and was sometimes negative. Following arterial injections of furosemide the CF threshold increased and the group delay peak decreased; the low-frequency tail was unaffected. The group delay decreased with increasing intensity; the reduction near and above CF was not only larger than that on the low-frequency tail, but also the change at 5-10 dB above threshold was far greater than expected from the Q10dB of the suprathreshold iso-rate tuning curves. A minimum-phase analysis suggested that the group delay response above CF, together with its nonlinear behavior, can be accounted for by a high-frequency, level-independent, amplitude plateau, in combination with the single unit, amplitude nonlinearity which is known to exist above CF.  相似文献   

7.
We calculate traveling waves in the mammalian cochlea, which transduces acoustic vibrations into neural signals. We use a WKB-based mechanical model with both the tectorial membrane (TM) and basilar membrane (BM) coupled to the fluid to calculate motions along the length of the cochlea. This approach generates two wave numbers that manifest as traveling waves with different modes of motion between the BM and TM. The waves add differently on each mass, producing distinct tuning curves and different characteristic frequencies (CFs) for the TM and the BM. We discuss the effect of TM stiffness and coupling on the waves and tuning curves. We also consider how the differential motions between the masses could influence the cochlear amplifier and how mode conversion could take place in the cochlea.  相似文献   

8.
Multicomponent stimuli consisting of two to seven tones were used to study suppression of basilar-membrane vibration at the 3-4-mm region of the chinchilla cochlea with a characteristic frequency between 6.5 and 8.5 kHz. Three-component stimuli were amplitude-modulated sinusoids (AM) with modulation depth varied between 0.25 and 2 and modulation frequency varied between 100 and 2000 Hz. For five-component stimuli of equal amplitude, frequency separation between adjacent components was the same as that used for AM stimuli. An additional manipulation was to position either the first, third, or fifth component at the characteristic frequency (CF). This allowed the study of the basilar-membrane response to off-CF stimuli. CF suppression was as high as 35 dB for two-tone combinations, while for equal-amplitude stimulus components CF suppression never exceeded 20 dB. This latter case occurred for both two-tone stimuli where the suppressor was below CF and for multitone stimuli with the third component=CF. Suppression was least for the AM stimuli, including when the three AM components were equal. Maximum suppression was both level- and frequency dependent, and occurred for component frequency separations of 500 to 600 Hz. Suppression decreased for multicomponent stimuli with component frequency spacing greater than 600 Hz. Mutual suppression occurred whenever stimulus components were within the compressive region of the basilar membrane.  相似文献   

9.
The question of whether one can conclude just from basilar membrane (BM) vibration data that the cochlea is an active mechanical system is addressed. To this end, a method is developed which computes the power flux through a channel cross section of a short-wave cochlear model from a given BM vibration pattern. The power flux is an important indicator of mechanical activity because a rise in this function corresponds to creation of mechanical energy. The power flux method is applied to BM velocity patterns as measured by Johnstone and Yates [J. Acoust. Soc. Am. 55, 584-587 (1974)] and by Sellick et al. [Hear. Res. 10, 101-108 (1983)] in the guinea pig and by Robles et al. [Peripheral Auditory Mechanisms, edited by J.B. Allen, J.L. Hall, A.E. Hubbard, S.T. Neely, and A. Tubis (Springer, New York, 1986a), pp. 121-128, and J. Acoust. Soc. Am. 80, 1364-1374 (1986b)] in the chinchilla. Before the calculations are performed, the BM data are interpolated and smoothed in order to avoid numerical errors as a result of too few and noisy data points. The choice of the smoothing method influences the computed power flux function considerably. Nevertheless, the calculations appear to make a clear distinction between the "old" data, showing broad BM tuning (Johnstone and Yates, 1974), and the "new" data, in which the response is much more peaked (Sellick et al., 1983; Robles et al., 1986a, b). The former do not give rise to a significant increase of the power flux; the latter do, although less convincingly for the Sellick et al. (1983) data than for the Robles et al. (1986a,b) data. It is thus concluded that the recently obtained, sharply tuned BM responses reflect the presence of mechanical activity in the cochlea.  相似文献   

10.
Study of mechanical motions in the basal region of the chinchilla cochlea   总被引:3,自引:0,他引:3  
Measurements from the 1-4-mm basal region of the chinchilla cochlea indicate the basilar membrane in the hook region (12-18 kHz) vibrates essentially as it does more apically, in the 5-9-kHz region. That is, a compressive nonlinearity in the region of the characteristic frequency, amplitude-dependent phase changes, and a gain relative to stapes motion that can attain nearly 10,000 at low levels. The displacement at threshold for auditory-nerve fibers in this region (20 dB SPL) was approximately 2 nm. Measurements were made at several locations in individual animals in the longitudinal and radial directions. The results indicate that there is little variability in the phase of motion radially and no indication of higher-order modes of vibration. The data from the longitudinal studies indicate that there is a shift in the location of the maximum with increasing stimulus levels toward the base. The cochlear amplifier extends over a 2-3-mm region around the location of the characteristic frequency.  相似文献   

11.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

12.
The responses of the malleus and the stapes to sinusoidal acoustic stimulation have been measured in the middle ears of anesthetized chinchillas using the M?ssbauer technique. With "intact" bullas (i.e., closed except for venting via capillary tubing), the vibrations of the tip of the malleus reach a maximal peak velocity of about 2 mm/s in responses to 100-dB SPL tones in the frequency range 500-6000 Hz; vibration velocity diminishes toward lower frequencies with a slope of about 6 dB/oct. Opening the bulla widely increases the responses to low-frequency stimuli by as much as 16 dB. At low frequencies, malleus response sensitivity with either open or intact bullas far exceeds all previous measurements in cats and matches or exceeds such measurements in guinea pigs. Whether measured in open or intact bullas, phase-versus-frequency curves closely approximate those predicted from the magnitude-versus-frequency curves by minimum phase theory. The stapes responses are similar to those of the malleus, except that stapes response magnitude is lower, on the average, by 7.5 dB at frequencies below 2 kHz and 10.7 dB at 2 kHz and above. Comparison of the responses of the middle ear with those of the basilar membrane at a site 3.5 mm from the stapes indicates that, at frequencies below 150 Hz, the basilar membrane displacement is proportional to stapes acceleration. At frequencies between 150 and 2000 Hz, basilar membrane displacement is proportional to stapes velocity.  相似文献   

13.
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.  相似文献   

14.
Behavioral studies of hearing loss produced by exposure to ototraumatic agents in experimental animals, combined with the anatomical evaluation of end-organ pathology, have provided useful information about the relation between dysfunction and pathology. However, in order to attribute a given hearing loss to some pattern of cochlear damage, it is necessary to test each ear independently. The objective of the present study was to evaluate attenuation measured behaviorally and protection to the cochlea provided by removal of the malleus and incus in noise-exposed chinchillas. Results from one behaviorally trained chinchilla with ossicular removal indicated a conductive hearing loss that varied from 41 dB at 0.125 kHz to 81 dB at 4.8 kHz and averaged 60 dB. Counts of missing sensory cells in ears of seven chinchillas with unilateral ossicular removal and exposure to noise (octave band centered at 0.5 kHz, 95 dB SPL, for durations up to 216 days, or centered at 4.0 kHz, 108 dB SPL, for 1.75 h) showed no more cell loss on the protected side than in age-matched control ears. From these data it is concluded that ossicular removal provides enough attenuation to protect the chinchilla cochlea from damage during these noise exposures, and that it will insure monaural responses behaviorally as long as the hearing loss in the test ear does not exceed that in the ear with ossicular removal by approximately 50 dB at any frequency.  相似文献   

15.
In this study, the phenomenon of higher harmonic thickness resonance of a piezoelectric transducer was used to investigate potentially additional sensitivity at the third harmonic frequency for conventional medical transducers. The motivation for this research is that some applications in medical ultrasound (e.g. third harmonic transmit phasing and contrast imaging) need probes which are sensitive around both the fundamental and third harmonic frequencies, and that these higher harmonic thickness modes, although often considered as undesired, might be used beneficially. The novelty aspect in this study is the presented transmit and receive potential at both the fundamental and third harmonic of a conventional cardiac probe with modified electrical tuning. Elements of an experimental PZT-based phased-array probe (fc = 3 MHz, 64 elements, element width = 0.3 mm, elevation aperture = 13 mm) were electrically retuned with series inductors around the third harmonic resonance frequency at 10 MHz. Hydrophone measurements with 10-MHz-tuned elements showed that, as compared to a conventionally tuned element, the transmit transfer function at the third harmonic increased more than 23 dB, while the sensitivity at the fundamental frequency was only 6 dB lower. Pulse-echo measurements showed that the two-way transfer function of a 10-MHz-tuned element resulted in 20 dB increased sensitivity around the third harmonic as compared to an untuned element. Simulated transfer functions, from both a 1D KLM and 2D finite element model of an element of the experimental array transducer, confirmed the measured sensitivity peaks at the fundamental and third harmonic. In conclusion, this study demonstrated the effect of changing the electrical tuning on a conventional array transducer which increased the sensitivity around the third harmonic resonance frequency, while maintaining good sensitivity at the fundamental frequency.  相似文献   

16.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

17.
This paper tests and applies a key prediction of the theory of coherent reflection filtering for the generation of reflection-source otoacoustic emissions. The theory predicts that reflection-source-emission group delay is determined by the group delay of the basilar-membrane (BM) transfer function at its peak. This prediction is tested over a seven-octave frequency range in cats and guinea pigs using measurements of stimulus-frequency-emission (SFOAE) group delay. A comparison with group delays calculated from published measurements of BM mechanical transfer functions supports the theory at the basal end of the cochlea. A comparison across the whole frequency range based on variations in the sharpness of neural tuning with characteristic frequency (CF) suggests that the predicted relation holds in the basal-most 60% of the cochlea. At the apical end of the cochlea, however, the measurements disagree with neural and mechanical group delays. This disagreement suggests that there are important differences in cochlear mechanics and/or mechanisms of emission generation between the base and apex of the cochlea. Measurements in humans over a four-octave range indicate that human SFOAE group delays are roughly a factor of 3 longer than their counterparts in cat and guinea pig but manifest similar trends across CF. The measurements thus reveal global deviations from scaling whose form appears quantitatively similar in all three species. Interpreted using the theory of coherent reflection filtering, the group delay measurements indicate that the wavelength at the peak of the traveling wave decreases with increasing CF at a rate of roughly 25% per octave in the base of the cochlea. The measurements and analysis reported here illustrate the rich potential inherent in OAE measurements for obtaining valuable information about basic cochlear properties such as tuning.  相似文献   

18.
Single units from the auditory nerve of frogs and toads have their receptor cells located in two separate sensory organs that provide disjoint frequency ranges. The amphibian papilla (ap) provides units with characteristic frequency (CF) in the low- and mid-frequency regions and the basilar papilla (bp) provides units with high CF. There are gross differences in both the mechanical design and innervation patterns of the two organs, so that one might expect discharge properties for units with different CF to differ in many respects. However, there have been few reports of response attributes that correlate strongly with CF for units in the mid- and high-CF regions. Measurements of automated tuning curves from 250 units in Rana pipiens show that W10 dB, the bandwidth of the tuning curve measured 10 dB above CF threshold, is consistently larger for high-CF units than for low- and mid-frequency units. When units are classified into three groups by an objective statistical method using only CF and W10 dB measurements, the groups appear to correspond reasonably well with the low-, mid-, and high-frequency categories identified in many other studies.  相似文献   

19.
Derived-band auditory brainstem responses (ABRs) were obtained in 43 normal-hearing and 80 cochlear hearing-impaired individuals using clicks and high-pass noise masking. The response times across the cochlea [the latency difference between wave V's of the 5.7- and 1.4-kHz center frequency (CF) derived bands] were calculated for five levels of click stimulation ranging from 53 to 93 dB p.-p.e. SPL (23 to 63 dB nHL) in 10-dB steps. Cochlear response times appeared to shorten significantly with hearing loss, especially when the average pure tone (1 to 8 kHz) hearing loss exceeded 30 dB. Examination of derived-band latencies indicates that this shortening is due to a dramatic decrease of wave V latency in the lower CF derived band. Estimates of cochlear filter times in terms of the number of periods to maximum response (Nmax) were calculated from derived-band latencies corrected for gender-dependent cochlear transport and neural conduction times. Nmax decreased as a function of hearing loss, especially for the low CF derived bands. The functions were similar for both males and females. These results are consistent with broader cochlear tuning due to peripheral hearing loss. Estimating filter response times from ABR latencies enhances objective noninvasive diagnosis and allows delineation of the differential effects of pathology on the underlying cochlear mechanisms involved in cochlear transport and filter build-up times.  相似文献   

20.
In the past, only a few investigations have measured vibration at the cochlea with bone conduction stimulation: dry skulls were used in those investigations. In this paper, the transmission properties of bone conducted sound in human head are presented, measured as the three-dimensional vibration at the cochlear promontory in six intact cadaver heads. The stimulation was provided at 27 positions on the skull surface and two close to the cochlea; mechanical point impedance was measured at all positions. Cochlear promontory vibration levels in the three perpendicular directions were normally within 5 dB. With the stimulation applied on the ipsilateral side, the response decreased, and the accumulated phase increased, with distance between the cochlea and the excitation position. No significant changes were obtained when the excitations were on the contralateral side. In terms of vibration level, the best stimulation position is on the mastoid close to the cochlea; the worst is at the midline of the skull. The transcranial transmission was close to 0 dB for frequencies up to 700 Hz; above it decreased at 12 dB/decade. Wave transmission at the skull-base was found to be nondispersive at frequencies above 2 kHz whereas it altered with frequency at the cranial vault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号