首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

2.
考虑到冶金行业中高炉炉壳开孔的实际情况,本文应用有限元分析的方法研究受远场均匀拉伸载荷,二维有限区域内菱形分布的圆孔中间不同开孔位置下的应力分布,得到最大应力集中系数随孔位置变化的三维变化曲面。此外,孔沿座标轴及沿原孔边缘位置变化对应力集中系数的影响被详细研究,从而为合理设计炉壳开孔提供了理论依据。  相似文献   

3.
A three-dimensional photoelastic analysis using the stress freezing and slicing techniques was employed to study the stress distribution and the stress-concentration factors around an elliptical hole in a plate of finite thickness. The plate was subjected to simple out-of-plane bending. A special bending device was designed to produce uniform bending moment at the two opposite free edges of the plate. Six plates with various elliptical holes were studied. The stress variation across the plate thickness at the periphery of the elliptical hole was also investigated. The experimental results were correlated with the existing theoretical solutions.  相似文献   

4.
吴晓 《力学季刊》2016,37(3):581-589
采用弹性理论研究了拉压不同弹性模量薄板上圆孔的孔边应力集中问题.采用广义虎克定律推导出了拉压不同弹性模量薄板上圆孔边的应力平衡方程,并联合利用应力函数及边界条件得到了拉压不同弹性模量薄板上圆孔边的应力表达式.算例分析表明,当薄板材料的拉压弹性模量相差较大时,采用经典弹性理论研究薄板上圆孔的孔边应力是不合适的,当经典弹性理论与拉压不同弹性模量弹性理论的计算结果间的差别超过工程允许误差5%时,应该采用拉压不同弹性模量弹性理论进行计算.  相似文献   

5.
Abstract

The optimal design of the stress state in elastic plate structures with openings is a problem of great significance in engineering practice. Achieving proper shape of hole can reduce stress concentration around the boundaries remarkably. The optimal shape of a single hole in an infinite plate under uniform stresses has been obtained by complex variable method based on different optimal criteria. The complex variable method is particularly suitable for the hole shape optimization in infinite plate, in which the continuous hole boundary can be represented by the mapping function. It can also be used to solve the shape optimization problems of two or more holes. However, because of the difficulty of finding the mapping function for multi connected domain, the holes are mapped onto slits or separately mapped onto a circle. In this article, the two symmetrical and identical holes are mapped onto an annulus simultaneously by the newly found mapping function, which has a general form. The maximum tangential stress around the boundaries is minimized to achieve the optimal hole shape. And the coefficients of mapping function which describe the boundary are calculated by differential-evolution algorithm.  相似文献   

6.
Using the Schwarz's alternating method and the Muskhelishvili's complex variable function techniques, an efficient and accurate stress solution for an infinite elastic plate around two elliptic holes, subjected to uniform loads on the hole boundaries and at infinity, is presented in this paper. The present algorithm can be used to compute the stress concentration factors (SCF), i.e., the ratio of the maximum tangential hoop stress to the applied uniform load, on the boundaries of the two elliptical holes of different sizes and layouts under different loading conditions, as illustrated in two numerical cases.  相似文献   

7.
The paper investigates the perturbation in an otherwise uniform stress field in an elastic half-space due to a doubly-periodic array of small hemispherical holes at the free surface. The solution is obtained using three potential functions of double Fourier series form in Galerkin's strain potential solution, the coefficients of which are determined using the collocation method. The unperturbed field is taken to be one of uniform plane stress parallel to the free surface. Two special cases are studied—uniform tension and uniform shear stress. Numerical results for these cases can be generalized by superposition to give solutions for a general state of biaxial plane stress. It is found that, for both tension and shear, the maximum stress concentration occurs at the bottom of the holes. The stress concentration factor increases with the ratio of hole spacing to radius, approaching the known solution for a single hemispherical hole at large ratios.  相似文献   

8.
When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And then, based on the superposition principle, the analytical solutions for stress around an elliptical hole in an infinite plate subjected to a uniform far-field stress and concentrated forces, are obtained. Tangential stress concentration will occur on the hole boundary when only far-field uniform loads are applied. When concentrated forces are applied in the reversed directions of the uniform loads, tangential stress concentration on the hole boundary can be released significantly. In order to minimize the tangential stress concentration, we need to determine the optimum positions and values of the concentrated forces. Three different optimization methods are applied to achieve this aim. The results show that the tangential stress can be released significantly when the optimized concentrated forces are applied.  相似文献   

9.
Residual Stresses Induced by Cold Expansion of Adjacent and Cut-Out Holes   总被引:1,自引:0,他引:1  
Fatigue life of fastener holes can be enhanced via a cold-expansion process to introduce a compressive residual stress field around the hole edge and to reduce crack growth propagation. Considering that aerospace components contain multiple rows of holes, the present investigation focuses on the evaluation of the three-dimensional residual stress distribution in adjacent cold-expanded (CE) holes. The redistribution of residual stresses caused by a cut introduced between two adjacent holes was also investigated. Finite element (FE) analysis and experimental technique were used to assess the residual stress distribution in a 6082-T6 aluminum plate with two adjacent holes expanded sequentially at 4 % nominal interference. The influence of center-to-center distance between holes was explored to assess the optimal level of separation between adjacent holes. Results suggested that residual stresses near second CE hole are markedly lower than those of first CE hole and that a cutting process does not affect the beneficial compressive residual stress around CE holes. These effects may delay fatigue crack propagation from CE holes or cut-out holes.  相似文献   

10.
In order to reduce the stress concentration around a hole in a plate, new, “analogue” reinforcements instead of reinforcing rings were used in this investigation. In two of these specimens, reinforcements with different volume fractions were arranged to coincide with the stress trajectories for an infinite plate with a hole under uniaxial tension. Two other specimens containing straight rectangular-grid-type reinforcements were made by using a photofabrication method. Specimens were then prepared by sandwiching these reinforcements between two epoxy-resin plates. Plane specimens, i.e., without reinforcement, were also made of the same epoxy resin for comparison. The stress concentrations at the edge of the hole under uniaxial tension were determined by photoelastic techniques. The measured stress-concentration factors were compared with well-known values for an infinite, isotropic, homogeneous plate containing a hole. Results were also compared with published data on [90/0/90/0]s 7-ply laminated composite plates, and on plates strengthened with reinforcing rings. A definite reduction in stress concentration was observed on specimens containing analogue reinforcement.  相似文献   

11.
The stress concentration factor around a circular hole in an infinite plate subjected to uniform biaxial tension and pure shear is considered. The plate is made of a functionally graded material where both Young’s modulus and Poisson’s ratio vary in the radial direction. For plane stress conditions, the governing differential equation for the stress function is derived and solved. A general form for the stress concentration factor in case of biaxial tension is presented. Using a Frobenius series solution, the stress concentration factor is calculated for pure shear case. The stress concentration factor for uniaxial tension is then obtained by superposition of these two modes. The effect of nonhomogeneous stiffness and varying Poisson’s ratio upon the stress concentration factors are analyzed. A reasonable approximation in the practical range of Young’s modulus is obtained for the stress concentration factor in pure shear loading.  相似文献   

12.
Based on the classical laminated plate theory, a finite composite plate weakened by multiple elliptical holes is treated as an anisotropic multiple connected plate. Using the complex potential method in the plane theory of elasticity of an anisotropic body, an analytical study concerned with the stress distributions around multiple loaded holes in finite composite laminated plates subjected to arbitrary loads was performed. The analysis makes use of the Faber series expansion, conformal mapping and the least squares boundary collocation techniques. The effects of plate and hole sizes, layups, the relative distance between holes, the total number of holes and their locations on the stress distribution are studied in detail. Some conclusions are drawn.  相似文献   

13.
Experimental and theoretical stress-concentration factor and stress-intensity factor solutions exist for a large number of hole shapes and configurations. However, little work has been done on the interaction between holes and free edges. This paper reports the results of an experimental study which investigated elliptical holes close to each edge of a tension plate. The holes were symmetric with respect to the longitudinal axis of the models and had their major axes normal to the edge of the plate. The ellipse ratio and the distance between the center and the edge were varied. A statistical model is developed which shows that the stress concentrationK g at both ends of the ellipses is linearly dependent on a geometric function ? such thatK g = αΦ + γ. The values for the function ? are given.  相似文献   

14.
基于复变函数理论,结合保角变换技术研究含功能梯度材料(FGM)加强环的任意几何形状孔附近应力集中。采用分层均匀化方法,给出了远场均布载荷作用下材料参数沿孔周法线方向任意变化的FGM加强环内的复势函数解。通过数值算例,详细讨论了加强环内杨氏模量不同变化规律对三角形、正方形、矩形等各种几何形状孔附近应力分布的影响。结果表明:通过在孔周衬入FGM加强环并合理选择加强环内材料参数的递变规律,可以有效缓解各种几何形状孔附近的应力集中。同时通过一些特例与已有文献比对验证了本文结果的正确性。  相似文献   

15.
Archive of Applied Mechanics - As an infinite elastic plane containing two holes subjected to uniform remote loading, the tangential stress concentration degree around the holes is related to the...  相似文献   

16.
Green’s functions of a point dislocation as well as a concentrated force for the plane problem of an infinite plane containing an arbitrarily shaped hole under stress, displacement, and mixed boundary conditions are stated. The Green’s functions are obtained in closed forms by using the complex stress function method along with the rational mapping function technique, which makes it possible to deal with relatively arbitrary configurations. The stress functions for these problems consist of two parts: a principal part containing singular and multi-valued terms, and a complementary part containing only holomorphic terms. These Green’s functions can be derived without carrying out any integration. The applications of the Green’s functions are demonstrated in studying the interaction of debonding and cracking from an inclusion with a line crack in an infinite plane subjected to remote uniform tension. The Green’s functions should have many other potential applications such as in boundary element method analysis. The boundary integral equations can be simplified by using the Green’s functions as the kernels.  相似文献   

17.
The scattering of flexural wave by multiple circular holes in an infinite thin plate is analytically solved by using the multipole Trefftz method. The dynamic moment concentration factor (DMCF) along the edge of circular holes is determined. Based on the addition theorem, the solution of the field represented by multiple coordinate systems centered at each circle can be transformed into one coordinate system centered at one circle, where the boundary conditions are given. In this way, a coupled infinite system of simultaneous linear algebraic equations is derived as an analytical model for the scattering of flexural wave by multiple holes in an infinite plate subject to the incident flexural wave. The formulation is general and is easily applicable to dealing with the problem containing multiple circular holes. Although the number of hole is not limited in our proposed method, the numerical results of an infinite plate with three circular holes are presented in the truncated finite system. The effects of both incident wave number and the central distance among circular holes on the DMCF are investigated. Numerical results show that the DMCF of three holes is larger than that of one, when the space among holes is small and meanwhile the specified direction of incident wave is subjected to the plate.  相似文献   

18.
Based on the elementary solutions and new integral equations, a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries. The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method, the numerical solution of the finite element method, and the analytical-numerical solutions of the series expansion and Laurent series methods. Some numerical examples are presented to investigate the effects of the hole geometry parameters (radii and relative positions) and loading conditions (remote stresses and surface stresses) on the interacting tangential stresses and interacting stress concentration factors (SCFs). The results show that whether the interference effect is shielding (k <1) or amplifying (k> 1) depends on the relative orientation of holes (α) and remote stresses (σx, σy). When the maximum principal stress is aligned with the connecting line of two-hole centers and σy <0.5σx, the plate containing two circular holes has greater stability than that containing one circular hole, and the smaller circular hole has greater stability than the bigger one. This new method not only has a simple formulation and high accuracy, but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.  相似文献   

19.
The method of caustics was used for the study of the evolution of stress concentration around a circular hole, which progressively changes in shape and becomes an elliptic hole, tending to an internal crack. The influence of the amount of ellipticity of the holes and their orientation relative to the axis of the applied external loads at infinity on the form of caustics created around the discontinuity was studied, as the elliptic holes tended to become internal cracks. A series of experiments with tension specimens containing small elliptic holes of any ellipticity and orientation was performed. Comparison of experimentally obtained caustics with theory yielded a good agreement of both results. Finally, the use of small elliptic holes drilled all over a biaxial stress field for the determination of the individual principal stresses and the principal directions at the area of the holes was outlined.  相似文献   

20.
Using two models, each containing three groups of intersecting or closely approaching holes, 18 different cases were investigated by three-dinensional frozen-stress photoelasticity. In all cases, the coplanar holes were orthogonal to the applied uniaxial tension. Included were three cases of intersecting hoes with square corners and varying hole-diameter ratios. Five cases of intersecting holes with rounded corners were studied for two hole-diameter ratios and varying corner radius. Stresses were determined for two cases where the end of one drilled hole partially penetrated another hole leaving acute corners or feathered edges at the intersection. Three types of closely approaching holes were studied: two cases in which the end of one drilled hole nearly intersected the side of an-other hole, two cases in which the ends of two drilled holes approached each other along a common axis, and four cases (called corner-approach cases) in which the ends of two drilled holes approached each other along orthogonal axes. A stress-concentration factor of 13 was found for one of the partially penetrating drilled-hole cases. The upper limit on stress-concentration factor for a very small hole intersecting a large hole in an infinite body subjected to uniaxial stress is 8.4 for metals. This factor is reduced to 5.2 as the diameters of the intersecting holes become equal. Rounding the corners on intersecting holes reduced the stress concentration by only four to seven percent. Closely approaching drilled holes results in higher stresses than fully intersecting holes when the minimum ligament width is less than ten percent of the hole diameter. Corner approach cases do not result in high stress-concentration factors as long as the ligament width is greater than the percent of the hole diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号