首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The biological response to high linear energy transfer (LET) radiation differs considerably from that to low LET radiation and this has been attributed to differences in the spatial energy deposition of both radiation qualities. In the case of X-rays the energy is deposited uniformly within the cell nucleus and produces damages in a purely stochastic manner. In contrast, for particles the energy is deposited inhomogeneously along the ion trajectory and the local dose decays with the square radial distance from the center of the track. This nonuniformity affects the yield and the distribution of aberrations among cells. Moreover, after high LET exposure a relationship between the aberration yield and cell cycle delay was observed. In this study, we present a detailed analysis of the distribution of aberrations in human lymphocytes reaching mitosis at early and later times after low and high LET exposure. Aberration data were fit to stochastic distributions demonstrating that the delay is related to the number of particle traversals per cell nucleus. To further elucidate this relationship, we introduce a Monte Carlo phenomenological model which incorporates the number of particle hits per nucleus. This value was derived by fitting theoretical distributions to the experimental data. Additionally, the probability that a cell traversed by a particle reaches mitosis at a given time was calculated. The analysis of biological data and numerical simulations clearly show the impact of the track structure on the formation of chromosome aberrations and their distribution among cells.  相似文献   

2.
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.  相似文献   

3.
Four experiments utilizing passive detectors (P0006, P0004, A0015, M0004) were flown on LDEF to study the radiation environment. These experiments have been summarized in a companion paper (Benton et al., 1996). One of the experimental goals was to measure LET spectra at different locations and shielding depths with plastic nuclear track detectors (PNTD). It was found that the LET spectra extended well above the LET cutoff imposed by the geomagnetic field on GCR particle penetration into LEO. The high LET particles detected were mostly short-range (range < 2000 μm), indicating that they were secondaries produced locally within the PNTD. The presence of these high LET particle fluences is important for the determination of dose equivalent because of the high Quality Factors (Q) involved. A relatively small fraction of particle fluence can contribute a large fraction of dose equivalent.

Short-range, inelastic secondary particles produced by trapped protons in the South Atlantic Anomaly (SAA) were found to be a major contributor to the LET spectra above 100 keV/μm. The LET spectra were found to extend beyond the 137 keV/μm relativistic GCR Fe peak to over 1000 keV/μm. The high LET tail of the LET spectra was measured in CR-39 and polycarbonate PNTDs using different techniques. GCR made a relatively modest contribution to the LET spectra as compared to the contributions from short-range secondary particles and stopping protons.

LET spectra intercomparisons were made between LDEF measurements and exposures to 154 MeV accelerated proton beams. The similarities support the role of nuclear interactions by trapped protons as the major source of secondary particles in the PNTDs. Also techniques were employed to reduce the range cutoff for detection of the short-range secondaries to 1 μm, so that essentially all secondary particles were included in the LET spectra. This has allowed a more realistic assessment of secondary contribution to dose equivalent.

Comparisons of measured and calculated LET spectra have been made that demonstrate the need for more accurate modeling of secondary particles in radiation transport codes. Comparisons include preliminary calculations in which attempts have been made to include secondary particles.  相似文献   


4.
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent.  相似文献   

5.
《Radiation measurements》2001,34(1-6):193-197
A spectrometer of the linear energy transfer (LET) based on the chemically etched polyallyldiglycolcarbonate (PADC) track etched detector was developed. The LET spectra are determined through the measurements of track parameters, it covers LET range between 10 and 700 keV/μm in tissue. A combined experimental and theoretical approach allowed the estimation of the critical dimensions of the sensitive volume necessary for developing a track to several nm. It seemed interesting to us to compare the LET spectra obtained by this method with the microdosimetric spectra available on the basis of a classical experimental microdosimetry method, a tissue equivalent proportional counter, for which the critical dimensions simulated are of the order of a few μm.

Both methods of experimental microdosimetry were compared in the high energy radiation reference fields and on the subsonic aircraft board. It was found out that the microdosimetric distributions are similar; some differences are, nevertheless, observed. Further studies with the goal to explain them are outlined.  相似文献   


6.
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called “Real-time Radiation Monitoring Device (RRMD)” utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 μSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5°) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15–200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.  相似文献   

7.
The effectiveness of the impact of therapeutic proton beams in human cells with respect to the criterion of formation of chromosome aberrations in human-blood lymphocytes is estimated. The physical characteristics of radiation (proton LET at the input of the object and in the region of the modified Bragg peak) and the role of the biological factor (the differences in the radiosensitivity of nondividing cells corresponding to the irradiation of normal tissues along the proton-beam path and tumor tissues) are taken into account. The relative biological effectiveness of protons is ∼1 at the beam input of the object and ∼1.2 in the Bragg peak region. Taking into account the higher radiosensitivity of dividing cells in the G 2 phase of the cell cycle, the irradiation effectiveness increases to ∼1.4.  相似文献   

8.
Ionizing radiation environment models, a 3-D spacecraft mass model, and radiation transport codes have been used to predict the radiation dose and linear energy transfer (LET) spectra measured at various locations on the LDEF satellite. The predictions are compared with thermoluminescent dosimeter measurements of the trapped proton and electron doses and with LET spectra measured by plastic nuclear track detectors. The predicted vs observed comparisons indicate some of the uncertainties of present ionizing radiation environment models for low Earth-orbit missions.  相似文献   

9.
Recently, space radiation dosimetry measurements were made by passive and active detectors inside the Spacelab [STS-47 (FMPT): 300km, 57°, STS-65 (IML-2 mission): 300km, 28.5°]. The LET distributions obtained by antioxidant doped CR-39 inside the Spacelab were compared with those measured by the tissue equivalent proportional counter (TEPC) and the real time radiation monitoring device (RRMD) consisting of eight silicon detectors. While both distributions by CR-39 are in good agreement with those obtained by active detectors over the region of LET of several tens to 200 keV/μm, a significant difference in the LET region of smaller than several tens keV/μm is seen. It is considered to be caused by the dip angle dependence of track formation sensitivity in CR-39. The track formation sensitivity for different dip angle were measured for several high heavy energy ions. Using these results, the correction for the dip angle was made for the LET distribution. The corrected result is consistent with the results obtained by active detectors.  相似文献   

10.
Human will be sooner or later return to the moon and will eventually travel to the planets near Earth. Space radiation hazards are an important concern for human space flight in deep space where galactic cosmic rays (GCR) and solar energetic particles are dominated and radiation is much stronger than that in LEO (Low Earth Orbit) because in deep space there is no magnetosphere to screen charged particle and no big planet nearby to shadow the spacecraft.Research indicates that the impact of particle radiation on humans depends strongly on the particles' linear energy transfer (LET) and the radiation risk is dominated by high LET radiation. Therefore, radiation research on high LET should be emphasized and conducted systematically so as to make radiation risk as low as reasonably achievable (ALARA) for astronauts.Radiation around the moon can be measured with silicon detectors and/or CR-39 plastic nuclear track detectors (PNTDs). At present stage the silicon detectors are one of the preferred active dosimeters which are sensitive to all LET and CR-39 detectors are the preferred passive dosimeters which are sensitive to high LET (≥5 keV/μm water). CR-39 PNTDs can be used as personal dosimeters for astronauts. Both the LET spectrum and the charge spectrum for charged particles in space can be measured with silicon detectors and CR-39 detectors.Calibrations for a detector system combined with the silicon detectors CRaTER (Cosmic Rays Telescope for the Effects of Radiation) from Boston University and Massachusetts Institute of Technology, and the CR-39 PNTDs from JSC (Johnson Space Center) – SRAG (Space Radiation Analysis Group) were conducted by exposing the detector system to the accelerator generated protons and heavy ions. US space mission for the radiation measurement around the moon using CRaTER was carried out in 2009.Results obtained from the calibration exposures indicate an excellent agreement between LET spectrum and charge spectrum measured with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System).This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER.  相似文献   

11.
《Radiation measurements》2007,42(9):1499-1506
High LET (linear energy transfer) radiation is the main contributor to the radiation field in low Earth orbit (LEO) in terms of dose equivalent. CR-39 plastic nuclear track detectors (PNTDs) can measure the LET spectrum and charge spectrum for the complicated radiation field in space. Previous research indicated that the sensitivity of CR-39 is different for CR-39 PNTDs working in different oxygen environments. LET calibration for CR-39 detectors in different oxygen environments is needed. Almost all the previous LET calibration work was carried out for CR-39 detectors in good-oxygen condition, LET calibration work for CR-39 in poor-oxygen condition has not been conducted until our work. Systematic LET calibrations were carried out by JSC-SRAG (Space Radiation Analysis Group) for CR-39 detectors working in different oxygen environments and abundant results of LET calibrations were obtained. This paper introduces the method for CR-39 LET calibration, presents and discusses the calibration results and some applications.  相似文献   

12.
Results of the experiments on neutron energy spectra measurements within broad energy range from 5 x 10(-7) to 2 x 10(2) MeV aboard the Mir orbital station and equivalent neutron dose estimation are presented. Four measurement techniques were used during the experiments. The shape of spectra and their absolute values are in good agreement. According to those experiments, an equivalent neutron dose depends upon effective shielding thickness and spacecraft mass. The neutron dose mentioned is comparable with that of ionizing radiation. Neutron flux levels measured aboard the Mir station have shown that a neutron spectrometer involving broad energy range will be used within the radiation monitoring systems in manned space flights.  相似文献   

13.
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5 degrees inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micrometers and 200 keV/micrometers. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.  相似文献   

14.
Uncertainties in risk assessment from solar particle events (SPE) include the role of high linear energy transfer (LET) secondary ions, the assessment of dose-rate effects as they relate to acute injury, the risk of cancer mortality and the modification of health effects due to the stress of spaceflight. We discuss several issues where new knowledge is required for improving estimates of radiation risk from SPE's. Secondary particles such as neutrons and low energy and charge ions (LZE) may dominate radiation risk behind a storm shelter and their biological effects are poorly understood, especially at low dose-rate. Dose-rate modulation of radiation response is also related to genetic pre-disposition an important determinant of radiation sensitivity. Molecular pathways that control cell death and tissue response have been elucidated in recent years and should provide new understanding of dose-rate effects for risk assessment. We consider some of these factors and discuss calculations using radiation transport codes, track structure models of energy deposition, and a molecular kinetics approach to model radiation response.  相似文献   

15.
为了研究低能N离子束的细胞遗传学效应, 以不同剂量的N离子束对蚕豆种子的种胚进行辐照, 观察分析根尖细胞的微核率、 有丝分裂指数和染色体畸变效应。 研究发现, 离子束的注入抑制了根尖细胞的有丝分裂, 干扰了正常的有丝分裂过程, 引发了染色体的结构、 行为和数目畸变; 随着离子注入剂量的增加, 微核率增加、 有丝分裂指数降低、 染色体畸变率增加。 In order to study the cytogenetic effects of low energy nitrogen ion irradiation, broad bean seed embryo was irradiated by different doses of nitrogen ions. Micronucleus rate, mitotic index and chromosome aberration in root tip cells were analyzed. The results showed that the injection of ions inhibited mitosis of root tip cells, interfered the normal process of mitosis, caused aberrations of chromosome structure, behavior and number. The frequency of micronucleus and chromosomal aberrations increased with the increasing radiation dosage, while mitotic index decreased.  相似文献   

16.
The dosimetry telescope (DOSTEL) was flown on the MIR orbital station during October 1997-January 1998. The mission average contributions to the absorbed dose rates (in water) were 126 +/- 4 microGy/d and 121 +/- 13 microGy/d for the GCR and the SAA component, respectively. The mean quality factors (ICRP60) deduced from the LET-spectra are 3.5 +/- 0.2 (GCR) and 1.3 +/- 0.1 (SAA). Separate LET spectra and temporal variations of the absorbed dose rates and of the mean quality factors are presented for these two radiation components as well as for solar energetic particles of the November 6, 1997 event.  相似文献   

17.
Ming Liu  Yan Wang  Yang Wang 《Optik》2008,119(8):383-387
Theoretical calculations of the wavelength dependence of the ocular wavefront aberrations are performed with individual eye model. Individual eye model, based on the traditional Gullstrand-Le Grand eye model, has been established with measured individual cornea data, eyeball depth and wavefront aberrations. We analyze the wavelength-dependent wavefront aberrations at 12 different visible wavelengths (between 400 and 750 nm) for eight eyes. The change of defocus with wavelength (longitudinal chromatic aberration, LCA) is noticeable, and in good agreement with the results from references. In most cases, the primary spherical aberration changes significantly with wavelength. In comparison with the primary spherical aberration, the other higher-order wavefront aberrations have a smaller change with wavelength. These results have potential applications in those situations where defocus or higher-order wavefront aberrations information in arbitrary wavelength is required.  相似文献   

18.
We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/μm) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.  相似文献   

19.
以人肝癌细胞系和正常肝细胞系为材料,报道了不同传能线密度射线辐射引发细胞染色体原初断裂及24 h内的修复情况。 计算了相对生物学效应的值。 以L02染色体总断裂数量得出的RBE值96.05 keV/μm的12C6+ 为3.6, 512 keV/μm 36Ar18+ 为2.9。 而以7721染色体总断裂数量得出的RBE值: 96.05 keV/μm的12C6+ 为3.5,512keV/μm 36Ar18+也为2.9。用产生等点染色单体断裂计算,则RBE更高。对比得出,高LET对增加等点染色单体断裂量的作用要远远大于对增加染色单体断裂量的作用。等点染色单体的断裂修复难度要远远大于染色单体断裂的修复难度, 这也是高LET高致死率的一个重要原因。 Human hepatoma SMMC 7721 and normal liver L02 cells were irradiated with γ rays,12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou(HIRFL). We reported the kinetic repair of chromosome breaks of L02 and SMMC 7721 cells in 24 h of post irradiation time. The relative biological effectiveness(RBE) for inducing chromatid breaks were 3.6 for L02 and 3.5 for SMMC 7721 cell lines at the linear energy transfer(LET) peak of 96.55 keV/μm 12C6+ ions, and 2.9 (both of the two cell lines) at 512 keV/μm 36Ar18+ ions.It suggested that the RBE of isochromatid type breaks induced by 36Ar18+ was higher than those by 12C6+. We concluded that the high production of isochromatid type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high LET radiation exposure.  相似文献   

20.
Recent concerns regarding the effects of the cosmic radiation field at aircraft altitudes on aircrew have resulted in a renewed interest in detailed measurements of the neutral and charged particle components in the atmosphere. CR-39 nuclear track detectors have been employed on a number of subsonic and supersonic aircraft to measure charge spectra and LET spectra at aircraft altitudes. These detectors are ideal for long term exposures required for these studies and their passive nature makes them suitable for an environment where interference with flight instrumentation could be a problem. We report here on measurements and analysis of short range tracks which were produced by high LET particles generated mainly by neutron interactions at aviation altitudes. In order to test the overall validity of the technique measurements were also carried out at the CERN-CEC field which simulates the radiation field at aviation altitudes and good agreement was found with dose values obtained using mainly heavy ion calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号