首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了正十八烷醇在高定向热解石墨(HOPG)上形成自组装膜的吸附特性, 正十八烷醇在室温下从溶液中吸附至HOPG上形成整齐定向排列的单层自组装膜. 通过扫描隧道显微镜(STM)、接触角测量和X射线光电子能谱(XPS)分析了正十八烷醇单层自组装膜在HOPG上的结构. 实验结果表明, 正十八烷醇自组装膜在基底上成平铺或直立形态, 由于分子在基底上覆盖程度的不同, 会导致它在基底上排列的方式有所不同.  相似文献   

2.
Low temperature scanning tunneling microscopy (STM) studies of metal-free phthalocyanine (H2Pc) adsorbed on highly oriented pyrolytic graphite (HOPG) have shown ordered arrangement of molecules for low coverages up to 1 ML. Evaporation of H2Pc onto HOPG and annealing of the sample to 670 K result in a densely packed structure of the molecules. Arrangements of submonolayer, monolayer, and monolayer with additional adsorbed molecules have been investigated. The high resolution of our investigations has permitted us to image single molecule orientation. The molecular plane is found to be oriented parallel to the substrate surface and a square adsorption unit cell of the molecules is reported. In addition, depending on the bias voltage, different electronic states of the molecules have been probed. The characterized molecular states are in excellent agreement with density functional theory ground state simulations of a single molecule. Additional molecules adsorbed on the monolayer structures have been observed, and it is found that the second layer molecules adsorb flat and on top of the molecules in the first layer. All STM measurements presented here have been performed at a sample temperature of 70 K.  相似文献   

3.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

4.
Self-assembled monolayers of a series of isophthalic acids (5-octadecyloxyisophthalic acid, 5-decyloxyisophthalic acid, 5-hexyloxyisophthalic acid, and 5-pentyloxyisophthalic acid) formed on highly ordered pyrolytic graphite (HOPG) at the solid-liquid interface were studied using scanning tunneling microscopy (STM). Although these molecules have the same dicarboxyl headgroup, their hydrocarbon tails are of different lengths. Hydrogen-bonding between headgroups and van der Waals interactions between the hydrocarbon tails control the final morphology of the monolayer. The STM images show that both van der Waals interactions (vdWs) and hydrogen-bonding (H-B) compete to control the structure, but the final structure of the monolayer is determined by balance between the two interactions.  相似文献   

5.
Many naturally occurring biomaterials are composed of laminated structures in which layers of beta-sheet proteins alternate with layers of inorganic mineral. These ordered laminates often have structural and mechanical properties that differ significantly from those of nonbiological materials. An important step in the construction of novel biomaterials is the creation of composites wherein a de novo designed protein assembles into an ordered structure. To achieve this goal, we layered a de novo protein onto the surface of highly ordered pyrolytic graphite (HOPG). The protein was derived from a combinatorial library of novel sequences designed to fold into amphiphilic beta-sheet structures. Atomic force microscopy reveals that the protein assembles on the HOPG surface into ordered fibers aligned in three orientations at 120 degrees to each other. The symmetry and extent of the ordered regions indicate that the hexagonal lattice underlying the graphite surface templates assembly of millions of protein molecules into a highly ordered structure.  相似文献   

6.
Tetradecylferrocene (4, Fc-(CH2)13CH3) was synthesized via lithiation of ferrocene by treatment with tert-butyl lithium, followed by alkylation with 1-bromotetradecane. Complex 4 forms a physisorbed ordered molecular monolayer on the surface of highly oriented pyrolytic graphite (HOPG) that was analyzed by scanning tunneling microscopy (STM). It features a lamellar structure with single rows of ferrocenyl moieties separating connecting areas formed by the long alkyl chains which are arranged parallel to each other. The ordering principle of 4 on the surface can be related to the arrangement of Fc-(CH2)13CH3 molecules in the three-dimensional crystal lattice.  相似文献   

7.
Symmetry breaking in the self-assembled monolayer (SAM) structure of 1-octadecanol on highly ordered pyrolytic graphite (HOPG) is observed. Due to the slight mismatch of the octadecanol molecule with the graphite lattice, the alkane chain undergoes distortion upon adsorption on the surface. The asymmetric distortion of the octadecanol SAM unit cell pair is observed by scanning tunneling microscopy at the liquid/solid interface. Asymmetric distortion is due to the requirement for planarity of the hydrogen bond connecting the two octadecanol molecules in the chevron-shaped unit cell. This very simple structure provides the first example of an adsorption-induced distortion to form a supramolecular asymmetric structure, which is formed by achiral molecules adsorbed on an achiral surface. What makes this system interesting and different from other examples of adsorption-induced chirality is that the adsorbate itself undergoes asymmetric distortion due to the existence of the substrate and the adsorbate conformation is different from the molecule in solution.  相似文献   

8.
An atomic force microscope (AFM) has been used to study solvation forces at the solid-liquid interface between highly oriented pyrolytic graphite (HOPG) and the liquids octamethylcyclotetrasiloxane (OMCTS), n-hexadecane (n-C16H34), and n-dodecanol (n-C11H23CH2OH). Oscillatory solvation forces (F) are observed for various measured tip radii (Rtip=15-100 nm). It is found that the normalized force data, F/Rtip, differ between AFM tips with a clear trend of decreasing F/Rtip with increasing Rtip.  相似文献   

9.
Immobilization of protein molecules on solid supports or surfaces in a controlled fashion is an important task for protein analysis at the solid/solution or solid/gas interface and biosensor fabrication. In this paper, the structure and biological activities of metallothionein (MT) layers immobilized on highly oriented pyrolytic graphite (HOPG) surfaces by means of two different strategies based on unspecific adsorption/chemisorption (MT‐HOPG system) and covalent binding (MT‐modified HOPG system) were studied respectively. The MT layers obtained by covalent binding to a previously functionalized HOPG surface are smooth and show a close‐packed ordered monolayer in contrast to those obtained by direct adsorption of the protein on substrate, which are disordered and relatively rough. Both adsorbed proteins exhibit reversible electron transfer at 0.25 V (Ag/AgCl) after immersion in CuSO4 solution, whereas redox current of MT‐modified HOPG system is four times larger than that of MT‐HOPG system. Moreover, the MTs adsorbed on bare HOPG surfaces are obviously denatured. All the above results show that covalent binding strategies lead to high structural regularity and mechanical stability of the adsorbed protein molecules with a maintained biological activity, which is prospective for applications in immobilizing MT on a transducer for biosensor design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The adsorption of base-free naphthalocyanine (Nc), a planar molecule, and tin-naphthalocyanine (SnNc), a nonplanar molecule, on a freshly cleaved highly oriented pyrolytic graphite (HOPG) surface at low sample temperature (50 K) has been studied using a variable-temperature scanning tunneling microscope in ultra-high vacuum conditions. The planar molecules form large areas of defect-free ordered monolayer with high molecular packing density while the nonplanar molecules show different phases of adsorption with lower molecular packing density. The SnNc adlayers follow the same geometry as the graphite substrate and form pure phases of adsorption with either all molecules in a Sn(2+) up or Sn(2+) down geometry. Moreover, a one-dimensional selectivity is observed in still another phase of Sn(2+) down geometry. Multilayers show a completely different kind of adsorption in each case. Nc molecules show columnar pi-stacking whereas the SnNc molecules exhibit noncolumnar stacking. Distinctly, a voltage-induced flipping of nonplanar tin-naphthalocyanine in the monolayer has been observed which can possibly be applied to single-molecular information storage.  相似文献   

11.
The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91 K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.  相似文献   

12.
High-resolution ellipsometry and neutron diffraction measurements have been used to investigate the structure, growth, and wetting behavior of fluid pentane (n-C(5)H(12)) films adsorbed on graphite substrates. We present isotherms of the thickness of pentane films adsorbed on the basal-plane surfaces of a pyrolytic graphite substrate as a function of the vapor pressure. These isotherms are measured ellipsometrically for temperatures between 130 and 190 K. We also describe neutron diffraction measurements in the temperature range 11-140 K on a deuterated pentane (n-C(5)D(12)) monolayer adsorbed on an exfoliated graphite substrate. Below a temperature of 99 K, the diffraction patterns are consistent with a rectangular centered structure. Above the pentane triple point at 143.5 K, the ellipsometric measurements indicate layer-by-layer adsorption of at least seven fluid pentane layers, each having the same optical thickness. Analysis of the neutron diffraction pattern of a pentane monolayer at a temperature of 130 K is consistent with small clusters having a rectangular-centered structure and an area per molecule of approximately 37 A(2) in coexistence with a fluid monolayer phase. Assuming values of the polarizability tensor from the literature and that the monolayer fluid has the same areal density as that inferred for the coexisting clusters, we calculate an optical thickness of the fluid pentane layers in reasonable agreement with that measured by ellipsometry. We discuss how these results support the previously proposed "footprint reduction" mechanism of alkane monolayer melting. In the hypercritical regime, we show that the layering behavior is consistent with the two-dimensional Ising model and determine the critical temperatures for layers n = 2-5.  相似文献   

13.
β-联碳酰基类衍生物有序自组装膜的STM研究   总被引:1,自引:0,他引:1  
在大气条件下, 利用扫描隧道显微镜研究了四个β-联碳酰基类衍生物在高定向裂解石墨(HOPG)表面的自组装结构. 研究分子的结构中均包含π电子共轭体系和烷基链. 实验研究了分子结构对自组装结构的影响, 并利用分子结构的变化实现了自组装膜结构的调控. 结果表明, 在甲苯溶剂中制备的这些自组装结构均长程有序, 分子间氢键和偶极相互作用是影响自组装膜结构变化的重要因素.  相似文献   

14.
A surface X-ray diffraction study is presented showing that highly ordered and uniaxially aligned hexa(3,7-dimethyl-octanyl)hexa-peri-hexabenzocoronene (HBC-C8,2) films can be fabricated by crystallization from solution onto friction-transferred poly(tetrafluoroethylene) (PTFE) layers. Three crystalline HBC-C8,2 majority phases result. In all three phases, the HBC-C8,2 molecules self-organize into columns which are uniaxially aligned along the direction defined by the PTFE macromolecules of the substrate. The three phases are quite similar, the major difference being their orientation with respect to the substrate. A quasi-2D epitaxial growth mechanism with a grapho-epitaxial component for one of the three phases explains the formation of the three rotational HBC-C8,2 variants. A method to obtain a thin film with only one phase is proposed. The results show that standard THETAV;-2THETAV; X-ray diffraction and transmission electron diffraction can be very misleading tools to estimate the crystalline quality in a thin film of complex structure.  相似文献   

15.
Self-assemblies of octakis(octyloxy) phthalocyanine (PcOC8) and its sandwich lanthanide complex, substituted praseodymium bis(phthalocyanine) (Pr(PcOC8)(2)), with oligo(phenylene-ethynylene) (OPE) have been investigated by scanning tunneling microscopy (STM) on a highly oriented pyrolytic graphite (HOPG) surface. The assemblies were prepared by dissolving the molecules in phenyloctane solution. It was found that both PcOC8 and Pr(PcOC8)(2) can form 4-fold or 6-fold symmetrical adlayers on HOPG. The intramolecular structure of Pr(PcOC8)(2) molecule was revealed by a high-resolution STM image. When OPE molecules are added into phenyloctane solvent, Pr(PcOC8)(2) molecules prefer to form an ordered adlayer at the top of the OPE adlayer, while PcOC8 molecules adsorb on HOPG surface directly and form separated domains with OPE. These results may be helpful to construct surface assemblies and develop molecular electronic devices in the future.  相似文献   

16.
The structure of molecular monolayers formed at the interface between atomically flat surfaces and a solution of free-base meso-tetradodecylporphyrins (H2Ps) was examined by scanning tunneling microscopy (STM) at the liquid/solid interface. On the surface of graphite (HOPG), H2Ps form a well-ordered monolayer characterized by an oblique unit cell. On Au(111), H2Ps form a self-organized monolayer comprised of two distinct domain types. In both types of domains, the density of the porphyrin cores is increased in comparison to the arrangement observed on HOPG. Also, high-resolution STM images reveal that, in contrast to what is observed on HOPG, physisorption on Au(111) induces a distortion of the porphyrin macrocycle out of planarity. By using X-ray photoelectron spectroscopy, we demonstrate that this is likely to be due to the coordination of the lone pairs of the iminic (-C=N-) nitrogen atoms of the porphyrin macrocycle to Au(111).  相似文献   

17.
Boron-doped carbon was prepared by the high-temperature reaction of B2O3 with the highly ordered pyrolytic graphite (HOPG). In order to reveal the effect of the boron doping on the HOPG structure, several experimental tools were employed such as X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). While the interlayer spacing of the graphite plane remains virtually unchanged, the boron doping makes the graphite plane of HOPG more disordered. Both the STM and the AFM studies show that the boron-doped HOPG surface is deformed not only in its bonding geometry, but also in its electronic structure. The overall results imply that the boron atom is substituted for the carbon atom rather than is intercalated into the graphite layers.  相似文献   

18.
利用扫描隧道显微镜研究了荧光液晶分子2, 5-二-[2-(3, 4-二-十二烷氧基-苯基)-乙烯基]-3, 6-二甲基吡嗪(BPDP12)在石墨表面上自组装单层膜的结构. 实验结果表明, 该化合物在石墨表面形成两种自组装结构:一种是稳定的, 分子的共轭中心相互平行, 烷基链相互交错的密排结构;另一种是不稳定的, 分子的共轭中心彼此为烷基链所分隔的非密排结构. 分子之间较强的π-π作用和分子烷基链之间的范德华作用力对分子组装的取向形成竞争, 是产生两种不同组装结构的根本原因.  相似文献   

19.
The chlorosomal light-harvesting antennae of green phototrophic bacteria consist of large supramolecular aggregates of bacteriochlorophyll c (BChl c). The supramolecular structure of (3(1)-R/S)-BChl c on highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) has been investigated by scanning tunneling microscopy (STM). On MoS2, we observed single BChl c molecules, dimers or tetramers, depending on the polarity of the solvent. On HOPG, we observed extensive self-assembly of the dimers and tetramers. We propose C=O...H-O...Mg bonding networks for the observed dimer chains, in agreement with former ultraviolet-visible and infrared spectroscopic work. The BChl c moieties in the tetramers are probably linked by four C=O...H-O hydrogen bonds to form a circle and further stabilized by Mg...O-H bondings to underlying BChl c layers. The tetramers form highly ordered, distinct chains and extended two-dimensional networks. We investigated semisynthetic chlorins for comparison by STM but observed that only BChl c self-assembles to well-structured large aggregates on HOPG. The results on the synthetic chlorins support our structure proposition.  相似文献   

20.
Two self-complementary phenanthroline-strapped porphyrins bearing imidazole arms and C 12 or C 18 alkyl chains were synthesized, and their surface self-assembly was investigated by atomic force microscopy (AFM) on mica and highly ordered pyrrolitic graphite (HOPG). Upon zinc(II) complexation, stable porphyrin dimers formed, as confirmed by DOSY (1)H NMR and UV-visible spectroscopy. In solution, the dimers formed J-aggregates. AFM studies of the solutions dip-coated onto mica or drop-casted onto HOPG revealed that the morphologies of the assemblies formed were surface-tuned. On mica, fiber-like assemblies of short stacks of J-aggregates were observed. The strong influence of the mica's epitaxy on the orientation of the fibers suggested a surface-assisted assembly process. On HOPG, interactions between the alkyl chains and the graphite surface resulted in the stabilization and trapping of monomer species followed by their subsequent association into coordination polymers on the surface. Interdigitation of the alkyl chains of separate polymer strands induced lateral association of wires to form islands that grew preferentially upon drop-casting and slow evaporation. Clusters of laterally assembled wires were observed for the more mobile functionalized porphyrins bearing C 12 chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号