首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective Amide Cleavage in Peptides Containing α,α-Disubstituted α-Amino Acids A new synthesis of dipeptides with terminal α,α-disubstituted α-amino acids, using 2,2-disubtituted 3-amino-2H-azirines 1 as amino-acid equivalents, is demonstrated. The reaction of 1 with N-protected amino acids leads to the corresponding dipeptide amides in excellent yield. It is shown that the previously described selective hydrolysis (HCl, toluene, 80°, or HCl, MeCN/H2O, 80°) of the terminal amide group results in an extensive epimerization of the second last amino acid. An acid-catalyzed enolization in the intermediate oxazole-5(4H)-ones is responsible for this loss of configurational integrity. In the present paper, a selective hydrolysis of the terminal amide group under very mild conditions is described: In 3N HCl (THF/H2O 1:1), the dipeptide N,N-dimethylamides or N-methytlanilides are hydrolized at 25–35° to the optically pure dipeptides in very good yield.  相似文献   

2.
A wide range of cyclic and open-chain α,α-disubstituted α-amino acids 1a-p were prepared. The racemic N-acylated α,α-disubstituted amino acids were resolved by coupling to chiral amines 15-18 derived from (S)-phenylalanine to form diastereoisomers 19/20 or 21/22 that could be separated by crystallization and/or flash chromatography on silica gel (Scheme 3). Selective cleavage via the 1,3-oxazol-5(4H)-ones 10a-p gave the corresponding optically pure α,α-disubstituted amino-acid derivatives 11 or 12 in high yield (Scheme 3). The absolute configurations of the α,α-disubstituted amino acids were determined from X-ray structures of the diastereoisomers 20, 21g′, 22d .  相似文献   

3.
Peptide-Bond Formation with C-Terminal α,α-Disubstituted α - Amino Acids via Intermediate Oxazol-5(4H)-ones The formation of peptide bonds between dipeptides 4 containing a C-terminalα,α-disubstituted α-amino acid and ethyl p-aminobenzoate ( 5 ) using DCC as coupling reagent proceeds via 4,4-disubstituted oxazol-5(4H)-ones 7 as intermediates (Scheme 3). The reaction yielding tripeptides 6 (Table 2) is catalyzed efficiently by camphor-10-sulfonic acid (Table 1). The main problem of this coupling reaction is the epimerization of the nonterminal amino acid in 4 via a mechanism shown in Scheme 1. CSA catalysis at 0° suppresses completely this troublesome side reaction. For the coupling of Z-Val-Aib-OH ( 11 ) and Fmoc-Pro-Aib-OH ( 14 ) with H-Gly-OBu1 ( 12 ) and H-Ala-Aib-NMe2 ( 15 ), respectively, the best results have been obtained using DCC in the presence of ZnCl2 (Table 3).  相似文献   

4.
Novel, more reliable and general reaction conditions for the α-alkylation of 4-monosubstituted 2-phenyloxazol-5(4H)-ones ( = 4-monosubstituted 2-phenyl-azlactones) rac- 2 to 4,4-disubstituted 2-phenyloxazol-5(4H)-ones rac- 1 were found (Scheme 2). Thus, a whole range of highly functionalized rac- 1 were prepared in medium-to-good overall yields (40-90%, see Table). Azlactones rac- 1 are ideal precursors for the synthesis of optically pure α,α -disubstituted (R)- and (S)-α-amino acids.  相似文献   

5.
Conformational Analysis of Tripeptide Models: The Influence of α,α-disubstituted α-Amino Acids on the Secondary Structure. NMR and CD Investigations The conformational properties of α,α-disubstituted α-amino acids are discussed on the basis of NMR, CD, X-ray, and molecular-mechanics studies on tripeptide models 1 . It is shown that different disubstituted amino acids do not exert the same influence on secondary-structure formation. Thus, the choice of substituents allows the construction and stabilisation of different conformations of oligopeptide chains.  相似文献   

6.
The 2,2-disubstituted 2H-azirin-3-amines 7 (2,2-disubstituted 3-amino-2H-azirines) were used as amino-acid synthons in the preparation of medium-sized cyclic depsipeptides and peptides derived from salicylic acids 6 and anthranilic acid 19 , respectively (Schemes 2--4 and 5, resp.). The combination of the ‘azirine/oxazolone method’ for the synthesis of linear peptides containing α,α-disubstituted α-amino acids and the acid-catalyzed amide cyclization in DMF at 60° proved to be an excellent preparative route to ten-membered cyclic depsipeptides and peptides. In the case of the anthranilic-acid derivative, a transannular ring-closure reaction was observed ( 24 → 25 ). Larger rings proved to be extremely sensitive to hydrolysis.  相似文献   

7.
Synthesis of Cyclic Depsipeptides via Direct Amide Cyclization: Cyclic Depsipeptides with 12-Ring Atoms and Alternating Sequence of α-Hydroxy and α-Amino Adds The reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine (1; R1 = R2 = R3 = R4 = Me) with α-hydroxy-carboxylic acids, followed by selective hydrolysis of the terminal dimethylamide group yields the dipeptide analogues 15a and 18b (Schemes 3 and 4). After protection of the OH group (→ 16a and 19 , resp.), coupling with the C-terminus-protected derivatives 14 and 18a , respectively, by a modified 1,1′-carbonyldiimidazole procedure followed by hydrolysis gives the linear depsipeptides 17c and 20 , respectively. Treatment with HCl gas in toluene at 100° leads to the cyclic depsipeptides 21 and 22 in very good yield. The two model reactions show that the ‘azirine/oxazolone-method’, combined with the ‘direct amide cyclization’, is a versatile procedure for the synthesis of cyclic depsipeptides containing α,α-disubstituted α-amino acids.  相似文献   

8.
A New Synthetic Route to β,α-Unsaturated α-Amino Acids A versatile new synthetic pathway for the preparation of βγ-unsaturated α-amino acids ( 1 ) is presented. Cu(I)-catalyzed addition of ethyl isocyanoacetate ( 2 ) to α-chloro carbonyl compounds ( 3 ) gives 5-chloroalkyl-2-oxazolin-4-carboxylates ( 4 ) in high yields. A reductive elimination on 4 by means of zinc yields the N-formyl derivatives of βγ-unsaturated α-amino carboxylates ( 5 ), which on acid hydrolysis lead to the free amino acids 1 . The five different βγ-dehydro-α-amono acids 1b-1f have been prepared by this method.  相似文献   

9.
Optically Active 3-Amino-2H-azirines as Synthons for Enantiomerically Pure αα-Disubstituted α-Amino Acids: Synthesis of the α-Methylphenylalanine Synthons and Some Model Peptides The synthesis of a novel 2-benzyl-2-methyl-3-amino-2H-azirine derivative with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers 9a and 9b (Scheme 4) which are the D - and L -2-methylphenylalanine ((α-Me)Phe) synthons, respectively. The reaction of 9a and 9b with thiobenzoic acid and with Z-leucine yielded the monothiodiamides 10a and 10b (Scheme 5) and the dipeptide derivatives 11a and 11b (Scheme 6), respectively. Methanolysis of 11b yielded 12b . The absolute configuration of 10a was established by X-ray crystallography. The absolute configuration of (α-Me)Phe in 12b has been deduced from the known configuration of L -leucine.  相似文献   

10.
Peptides containing various α,α‐disubstituted α‐amino acids, such as α‐aminoisobutyric acid (Aib), 1‐aminocyclopentane‐1‐carboxylic acid, α‐methylphenylalanine, and 3‐amino‐3,4,5,6‐tetrahydro‐2H‐pyran‐3‐carboxylic acid have been synthesized from the N‐ to the C‐terminus by the ‘azirine/oxazolone method’ under solid‐phase conditions. In this convenient method for the synthesis of sterically demanding peptides on solid‐phase, 2H‐azirin‐3‐amines are used to introduce the α,α‐disubstituted α‐amino acids without the need for additional reagents. Furthermore, the synthesis of poly(Aib) sequences has been explored.  相似文献   

11.
The esterification of the carboxyl group in copoly(γ-benzyl-L -glutamyl-L -glutamic acid) was carried out using N-hydroxysuccinimide and dicyclohexylcarbodimide to yield the activated site for the coupling reaction with amino compounds. The α-helix stability of the reactive copolymer thus obtained is remarkably affected in the presence of succinimide ring. This copolymer was proved to react nearly completely with amino alcohols such as 2-aminoethanol, 3-aminopropanol, and diethanolamine. The copoly(N5-hydroxyalkyl-L -glutamine) thus prepared is insoluble in water, since the benzyl ester remains in this copolymer. The copoly(α-amino acids) having another functional group were also prepared using aminoalkylsilane. Crosslinked poly(α-amino acids) were prepared by the reaction of the reactive copolymer with a low-molecular-weight polymer of PBLG having one amino group on each end of its main chain which was obtained from the corresponding NCA using p-diaminobenzene as an initiator. Another crosslinked polymer was prepared using an alkyl diamine such as 1,6-diaminohexane or 1,12-diaminododecane as a crosslinking reagent. The crosslinked copoly(α-amino acids) bearing the activated site are able to further react with various compounds having amino groups.  相似文献   

12.
Nucleophilic Ring Opening of Aryl α-Nitrocyclopropanecarboxylates with Sterically Protected but Electronically Effective Carbonyl and Nitro Group. A New Principle of α-Amino Acid Synthesis (2-Aminobutanoic Acid a4-Synthon) The readily available 2,4,6-tri(tert-butyl)-and 2,6-di(tert-butyl)-4-methoxypahenol esters 2 of α-nitrocyclo-propanecarboxaylic acid ring opening with C-, N-, O-, and S-nucleophiles (cyanide, malonate, azide, anilines, alkoxides, phenoxides, thiolates) in DMF or alcohol solvents (80–95% yield). The products 6 – 14 are 2-nitrobutanoates with the newly introduced substituent in the 4-position. Reduction of the NO2 group with Zn/AcOH/Ac2O gives N-acetyl-α-amino acid esters 16 – 22 (40–90% yield). Subsequent oxidative cleavage (H2O2/HCOOH) of The p-methoxy-phenyl esters 18 and 20 produces free amino acids (65% 23 and 67% 24 , respectively). Thus, the nitro ester 2 corresponds to a 2-aminobutanoic-acid a4-synthon, it is a ‘homo-Michael acceptor’ producing γ-substituted α-amino acids.  相似文献   

13.
A systematic quantum chemical study on the structure and stability of the major types of β-turn structures in peptides and proteins was performed at different levels of ab initio MO theory (MP2/6-31G*, HF/6-31G*, HF/3-21G) considering model turns of the general type Ac(SINGLE BOND)Xaa(SINGLE BOND)Yaa(SINGLE BOND)NHCH3 with the amino acids glycine, l - and d -alanine, aminoisobutyric acid, and l -proline. The influence of correlation effects, zero-point vibration energies, thermal energies, and entropies on the turn formation was examined. Solvent effects on the turn stabilities were estimated employing quantum chemical continuum approaches (Onsager's self-consistent reaction field and Tomasi's polarizable continuum models). The results provide insight into the geometry and stability relations between the various β-turn subtypes. They show some characteristic deviations from the widely accepted standard rotation angles of β turns. The stability order of the β-turn subtypes depends strongly on the amino acid type. Thus, the replacement of l -amino acids in the two conformation-determining turn positions by d - or α,α-disubstituted amino acid residues generally increases the turn formation tendency and can be used to favor distinct β-turn subtypes in peptide and protein design. The β-turn subtype preferences, depending on amino acid structure modifications, can be well illustrated by molecular dynamics simulations in the gas phase and in aqueous solution. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18 : 1415–1430, 1997  相似文献   

14.
Conformational Analysis of Tripeptide Models: The Influence of α,α-disubstituted α-Amino Acids on the Secondary Structure. X-Ray Analysis and Conformational Energy Calculations The X-ray analysis of tripeptide Z-Ile-Val(2-Me)-benzocaine ( 1f ) reveals the presence of a type-III β-turn. Moreover, MMP2 calculations on tripeptides, e.g. Z-Ile-Aib-benzocaine ( 1c ), Z-Ile-D -Val(2-Me)-benzocaine ( 1g ), Z-Ile-Gly(2,2-Pr2)-benzocaine ( 1h ), Z-Ile-Gly-benzocaine ( 1a ), and 1f , fit well into the frame of NMR and CD investigations. They allow considerations on the relative stability of different types of β-turns depending on the peptide sequence, e.g. the kind of α,α-disubstituted amino-acid moieties.  相似文献   

15.
A controllable and regiodivergent N-allylation reaction involving readily available O-alkyl hydroxamates derived from natural α-amino acids has been developed, allowing regiospecific access to α/β-dipeptides containing α-unsaturated β-amino acids moieties in moderate to good yields. The regioselectivity could be conveniently switched by alternation of the catalysts and solvents.  相似文献   

16.
The opening of the pyranone ring in 2H-naphtho[1,2-b]pyran-2-one derivative (1) and 3H-naphtho[2,1-b]-pyran-3-one derivatives 8 and 20 with nucleophiles afforded 3-(naphthyl-1)- and 3-(naphthyl-2)propenoates (substituted β-naphthyl-α,β-dehydro-α-amino acid derivatives) 7, 13, 14, 15, 24 , and 35 .  相似文献   

17.
Enantiomerically pure cis- and trans-5-alkyl-1-benzoyl-2-(tert-butyl)-3-methylimidazolidin-4-ones ( 1, 2, 11, 15, 16 ) and trans-2-(tert-butyl)-3-methyl-5-phenylimidazolidin-4-one ( 20 ), readily available from (S)-alanine, (S)-valine, (S)-methionine, and (R)-phenylglycine are deprotonated to chiral enolates (cf. 3, 4, 12, 21 ). Diastereoselective alkylation of these enolates to 5,5-dialkyl- or 5-alkyl-5-arylimidazolidinones ( 5, 6, 9, 10, 13a-d, 17, 18, 22 ) and hydrolysis give α-alkyl-α-amino acids such as (R)- and (S)-α-methyldopa ( 7 and 8a , resp.), (S)-α-methylvaline ( 14 ), and (R)-α-methyl-methionine ( 19 ). The configuration of the products is proved by chemical correlation and by NOE 1H-NMR measurements (see 23, 24 ). In the overall process, a simple, enantiomerically pure α-amino acid can be α-alkylated with retention or with inversion of configuration through pivaladehyde acetal derivatives. Since no chiral auxiliary is required, the process is coined ‘self-reproduction of a center of chirality’. The method is compared with other α-alkylations of amino acids occurring without racemization. The importance of enantiomerically pure, α-branched α-amino acids as synthetic intermediates and for the preparation of biologically active compounds is discussed.  相似文献   

18.
Aziridines are highly useful compounds as building blocks for the synthesis of important organic compounds. Amino acid synthesis by aziridine ring opening reaction is a good example to the use of aziridines. Although this reaction is studied by many groups, the synthesis of amino phosphonic acids is less explored. In this study, we have carried out the ring opening reaction of aziridinyl phosphonates with a variety of alcohols including the more functional propargylic and allylic alcohols. These reactions provided functionalized α‐amino‐β‐alkoxyphosphonates in 40–91 % yield.  相似文献   

19.
meso-and dl-Diastereomers of a number of α,α′-disubstituted succinic acids have been shown to give different 13C NMR chemical shifts. The results can be satisfactorily explained on the basis of their conformational analyses. A discussion of the observed chemical shifts is presented, and the preferred conformation for each of several compounds is predicted on the basis of these chemical shifts.  相似文献   

20.
Diazotization of α-amino acids in 48:52 (w/w) hydrogen fluoride/pyridine along with excess of potassium halide results in the corresponding α-halocarboxylic acids in good to excellent yields (Table 1 and 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号