首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The intermacromolecular complexation of polymers with chemically complementary structures in aqueous media is a new approach to modifying polymer solutions, especially to enhance solution viscosity. In this study, complexed solutions formed through the hydrogen‐bonding complexation of several nonionic water‐soluble polymer pairs—poly(acrylic acid) (PAA) with polyacrylamide (PAM), PAM with poly(ethylene oxide) (PEO), PAA with poly(vinyl alcohol) (PVA), and PEO with PVA—were prepared, and the viscosity enhancement of the complexed solutions were studied with vision spectrophotometry and viscometry. The effects of the polymer concentration, polymer molecular weight, and pH value of the polymer solution on the intermacromolecular interactions were investigated through a comparison of the viscosity enhancement factor R of different complexed solutions. The results show that the viscosity of the PAA/PAM complexed solution is much higher than that of its constituents, whereas that of the PAM/PEO and the PAA/PVA complexed solutions are between the viscosities of their constituents but are higher than the theory values calculated from the blending rule of two polymer solutions. These results indicate that in the complexed solutions there exist interactions between the macromolecules with chemically complementary structures, although the interactions are quite different for the different complexed systems. It is the interactions that lead to an association of the polymers and, hence, an obvious enhancement in the solution viscosity and the resistance of the polymer solutions to shearing. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1069–1077, 2000  相似文献   

2.
Interpolymer complexation of poly(acrylic acid) with poly(acrylamide) and hydrolysed poly(acrylamide) was studied by fluorescence spectroscopy and viscometry in dilute aqueous solutions. Changes in chain conformation and flexibility due to the interpolymer association are reflected in the intramolecular excimer fluorescence of pyrene groups covalently attached to the polymer chain. Both poly(acrylamide) and hydrolysed poly(acrylamide) form stable complexes with poly(acrylic acid) at low pH. The molecular weight of poly(acrylic acid) and solution properties such as pH and ionic strength were found to influence the stability and the structure of the complexes. In addition, the polymer solutions mixing time showed an effect on the mean stoichiometry of the complex. The intrinsic viscosity of the solutions of mixed polymers at low pH suggested a compact polymer structure for the complex.  相似文献   

3.
Sequence-specific phenylacetylene oligomers consisting of functionalized monomers (hexyl benzoate, hexyl phenyl ether, benzonitrile, and tert-butylphenyl) are synthesized in gram quantities using solid-phase methods. Growing oligomers are attached to a divinylbenzene cross-linked polystyrene support by the 1-aryl-3-propyl-3-(benzyl-supported) triazene moiety. This linkage is obtained by reaction of arenediazonium tetrafluoroborate salts with a n-propylamino-modified Merrifield resin. Condensation strategies are described, producing oligomers with higher yields and simplified procedures compared to solution-phase methods. Terminal acetylene is protected with a trimethylsilyl group. After deprotection of the resin-bound terminal acetylene, an aryl iodide monomer or an aryl iodide-terminated oligomer is coupled to the supported oligomer using a palladium(0) catalyst. The cycle can be repeated to produce sequence-specific oligomers of varying length and functionality. The resulting oligomers are liberated from the polymer support by cleavage of the 1-aryl-3-propyl-3-(benzyl-supported) triazene group by reaction with iodomethane producing an aryl iodide.  相似文献   

4.
The free solution mobility of DNA molecules of different molecular weights, the sequence dependence of the mobility, and the diffusion coefficients of small single- and double-stranded DNA (ss- and dsDNA) molecules can be measured accurately by capillary zone electrophoresis, using coated capillaries to minimize the electroosmotic flow (EOF) of the solvent. Very small differences in mobility between various analytes can be quantified if a mobility marker is used to correct for small differences in EOF between successive experiments. Using mobility markers, the molecular weight at which the free solution mobility of dsDNA becomes independent of molecular weight is found to be approximately 170 bp in 40 mM Tris-acetate-EDTA buffer. A DNA fragment containing 170 bp has a contour length of approximately 58 nm, close to the persistence length of DNA under these buffer conditions. Hence, the approach of the free solution mobility of DNA to a plateau value may be associated with the transition from a rod-like to a coil-like conformation in solution. Markers have also been used to determine that the free solution mobilities of ss- and dsDNA oligomers are sequence-dependent. Double-stranded 20-bp oligomers containing runs of three or more adenine residues in a row (A-tracts) migrate somewhat more slowly than 20-mers without A-tracts, suggesting that somewhat larger numbers of counterions are condensed in the ion atmospheres of A-tract DNAs, decreasing their net effective charge. Single-stranded 20-mers with symmetric sequences migrate approximately 1% faster than their double-stranded counterparts, and faster than single-stranded 20-mers containing A(5)- or T(5)-tracts. Interestingly, the average mobility of two complementary single-stranded 20-mers is equal to the mobility of the double-stranded oligomer formed upon annealing. Finally, the stopped migration method has been used to measure the diffusion coefficients of single- and double-stranded oligomers. The diffusion coefficients of ssDNA oligomers containing 20 nucleotides are approximately 50% larger than those of double-stranded DNA oligomers of the same size, reflecting the greater flexibility of ssDNA molecules. The methods used to carry out these experiments are also described in detail.  相似文献   

5.
Molecular beacon strategies using PNA are currently restricted to fluorophore attachment to the ends of the PNA. We report the synthesis of PNA oligomers wherein fluorophores can be attached to the PNA backbone from novel gamma-lysine PNA monomers. Oligomers incorporating the modified PNA showed comparable thermal stability to the corresponding aegPNA oligomer with DNA. When the modified PNA oligomer was annealed with complementary DNA, the fluorescence intensity increased 4-fold over the unbound PNA. [structure: see text]  相似文献   

6.
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.  相似文献   

7.
Monodisperse, cross-conjugated perphenylated iso-polydiacetylene (iso-PDA) oligomers, ranging from monomer 15 to pentadecamer 25, have been synthesized by using a palladium-catalyzed cross-coupling protocol. Structural characteristics elucidated by X-ray crystallographic analysis demonstrate a non-planar backbone conformation for the oligomers due to the steric interactions between alkylidene phenyl groups. The electronic absorption spectra of the oligomers show a slight red-shift of the maximum absorption wavelength as the chain length increases from dimer 17 b to pentadecamer 25, a trend that has saturated by the stage of nonamer 22. Fluorescence spectroscopy confirms that the pendent phenyl groups present on the oligomer framework enhance emission, and the relative emission intensity consistently increases as a function of chain length n. The molecular third-order nonlinearities, gamma, for this oligomer series have been measured via differential optical Kerr effect (DOKE) detection and show a superlinear increase as a function of the oligomer chain length n. Molecular modeling and spectroscopic studies suggest that iso-PDA oligomers (n>7) adopt a coiled, helical conformation in solution.  相似文献   

8.
通过溶液折光指数和粘度测定,研究了聚丙烯酸(PAA)与聚氧化乙烯(PEO)高分子链间在复合溶液中的相互作用和PAA/PEO高分子氢键复合溶液的结构与粘度,研究了复合溶液粘度随溶液pH值的变化规律及不同浓度时剪切速率对复合溶液粘度和复合增粘效果的影响。结果表明:PAA/PEO复合溶液结构不同于PAA和PEO两组分聚合物溶液结构,PAA与PEO高分子链间的氢键相互作用形成构象更为伸展、流体力学体积列大  相似文献   

9.
Colloidal polymer particles are widely used in a variety of applications ranging from chromatography to surface modified bioreactors in protein arrays. In the present study, surface attachment of polystyrene particles to a polystyrene substrate has been performed using oligonucleotide hybridization. Thiolated complementary oligomers of cytosine and guanine have been covalently coupled to a pyridyl disulphide (PDS) modified polyethyleneglycol tether, forming part of a triblock copolymer which is adsorbed to the polystyrene surfaces via hydrophobic polypropylene oxide center blocks. The ability to withstand shear forces was studied using a laminar flow cell and the uptake of oligomers on the particles was quantified using two complementary techniques: UV-spectroscopy and sedimentation field flow fractionation. The possibility to tether particles in a flow cell suitable for practical use in e.g. a FIA-system is demonstrated.  相似文献   

10.
Dibenzofulvene (DBF) was polymerized using anionic initiators to afford a vinyl polymer. Oligo(DBF)s having from two to eight side-chain fluorene moieties bearing different chain-terminal groups were isolated by preparative size-exclusion chromatography. The structures of the isolated oligomers were revealed by single-crystal X-ray and (1)H NMR analyses. Both in solution and in crystal, the in-chain fluorene moieties stacked on top of each other, while the terminal conformation varied depending on the terminal group. These conformational characteristics were supported by molecular mechanics and dynamics calculations. The oligomers and polymers indicated hypochromism and red shift in UV absorption spectra and exclusive excimer emission in fluorescence spectra. In addition, reduced oxidation potentials were observed for the oligomers in electrochemical analyses, which suggests charge delocalization over the pi-stacked electron systems. The photophysical and electrochemical effects increased with the chain length of the oligomers and leveled off around the chain length of an oligomer consisting of five fluorene units.  相似文献   

11.
Crystallographic analysis revealed that pyridine-palladium complexation is a good geometric match to the m-phenylene ethynylene (mPE) repeat unit and thus could serve as a reversible linking group to join oligomer segments together. A series of pyridine-terminated mPE oligomers were then synthesized and found to coordinate with palladium dichloride to give complexes effectively twice the length of the free oligomers. A quantitative analysis of these coordination equilibria by isothermal calorimetry found the ability of the pyridine end-group to form a coordination complex corresponded with their ability to fold. Oligomers that were able to form complexes of sufficient length to fold showed positive cooperativity based on experimental determination of their association constants with a palladium ion. We suggest that the additional free energy of complexation for the folded oligomers is analogous to chelation by multidentate ligands, but here the "multidentate ligand" is held together by supramolecular rather than covalent bonds.  相似文献   

12.
On the basis of previous concepts concerning the molecular nature of pressure-sensitive adhesion, a simple method of preparing new adhesives with the desired mechanical and adhesive behavior and water-absorbability via mixing of nonadhesive polymers has been developed. Pressure-sensitive adhesion is related to the combination of a high energy of cohesion and a large free volume, which leads to a high molecular mobility. This method is based on the formation of interpolymer or polymer-oligomer complexes during mixing of macromolecules capable of hydrogen, electrostatic, or ionic bonding. In interpolymer complexes, a high cohesion results from the formation of bonds between macromolecules carrying complementary groups in main chains, whereas free volume is related to defectiveness of the resulting network and formation of loops. In complexes formed by a high-molecular-mass polymer and an oligomer carrying complementary reactive groups at ends of short chains, a high energy of cohesion is related to their interaction with mainchain functional groups of the polymer, whereas a relatively large free volume is associated with the length and flexibility of intermacromolecular crosslinks via oligomer chains. The adhesive and viscoelastic properties of adhesives and their water absorbability are regulated by changes in the composition of mixtures of a film-forming polymer with a polymer or oligomer crosslinker and a plasticizer. In this case, an increase in cohesive strength is achieved owing to an increase in the crosslinker concentration, while the enhancement of free volume is ensured by the increasing plasticizer content in the blend. Adhesive materials capable of adherence to wet substrates, hydroactivated adhesives, and adhesion moisture sorbents have been prepared for the first time.  相似文献   

13.
A scheme is presented for stabilizing hydrophobic molecules and releasing them into aqueous solution via DNA hybridization. A tetradecyl hydrophobic tail is covalently attached to synthetic oligomers, and the resulting amphiphilic molecules take up substantial amounts of orange OT and pyrene dyes in aqueous environments. The resulting structures do not affect the surface tension and are predominantly spherical as shown by light scattering and TEM, and the pyrene fluorescence is consistent with a hydrophobic environment. It is concluded that the amphiphilic DNA creates vesicular domains upon which the hydrophobic dyes reside and are stabilized in solution. Upon exposure to the complementary strand, the pyrene dye is released from the structures, showing that the scheme can be used for unlabeled or DNA-mediated drug delivery.  相似文献   

14.
Circular dichroism spectroscopy has been used to study the self-assembly of two series of m-phenylene ethynylene oligomers in highly polar solvents. The helical conformation of shorter oligomer lengths was found to be stabilized in aqueous acetonitrile solutions, while longer oligomers began to interact intermolecularly. The intermolecular aggregation of the oligomers in aqueous solutions revealed a chain length dependent association that required the presence of a stable helical conformation. Evidence for intermolecular interactions is provided by Sergeants and Soldiers experiments in which the twist sense bias of a chiral oligomer is transferred to an achiral oligomer.  相似文献   

15.
Summary: Epoxy-based oligomers having length up to four units with dendritic chromophore-containing fragments covalently attached through spacers to the bearing chain are studied. The structure of the oligomers was obtained in the course of conformational search by Monte-Carlo method, the distribution of the torsion angles values in the dendritic fragment was examined by molecular dynamics. The nonlinear-optical response of the studied oligomers and dendritic chromophore fragments was calculated by the TDHF method at AM1 level. Intradendron cross-linking of chromophore groups is investigated, diphenylmethandiisocyanate used as hardening agent. Cross-linking is shown to decrease the angles between the chromophores in the dendron, thus providing enhanced nonlinear-optical characteristics of the oligomer. Stacking-like arrangement of chromophore groups, observed in variety of oligomers, is investigated in the framework of topological analysis of electron charge density, and Van-der-Waals interactions are found to be responsible for the stacking effect.  相似文献   

16.
采取亲核取代反应合成了含有羟端基和不含羟端基的两种线性联苯型聚醚醚酮(PEDEK)齐聚物,并采用MS,1HNMR,ICP,IR,DSC和WAXD等方法对齐聚物进行表征.研究发现,含羟端基的齐聚物因分子间存在氢键,其X射线衍射峰峰位和峰形与聚合物十分相似,而不含羟端基齐聚物的X射线衍射峰与聚合物相差较大.  相似文献   

17.
We derive the radial distribution function and the static structure factor for the particles in model nanoparticle-organic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R(g) is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood.  相似文献   

18.
Reversible formation of protein oligomers or small clusters is a key step in processes such as protein polymerization, fibril formation, and protein phase separation from dilute solution. A straightforward, statistical mechanical approach to accurately calculate cluster free energies in solution is presented using a cell-based, quasichemical (QC) approximation for the partition function of proteins in an implicit solvent. The inputs to the model are the protein potential of mean force (PMF) and the corresponding subcell degeneracies up to relatively low particle densities. The approach is tested using simple two and three dimensional lattice models in which proteins interact with either isotropic or anisotropic nearest-neighbor attractions. Comparison with direct Monte Carlo simulation shows that cluster probabilities and free energies of oligomer formation (DeltaG(i) (0)) are quantitatively predicted by the QC approach for protein volume fractions approximately 10(-2) (weight/volume concentration approximately 10 g l(-1)) and below. For small clusters, DeltaG(i) (0) depends weakly on the strength of short-ranged attractive interactions for most experimentally relevant values of the normalized osmotic second virial coefficient (b(2) (*)). For larger clusters (i"2), there is a small but non-negligible b(2) (*) dependence. The results suggest that nonspecific, hydrophobic attractions may not significantly stabilize prenuclei in processes such as non-native aggregation. Biased Monte Carlo methods are shown to accurately provide subcell degeneracies that are intractable to obtain analytically or by direct enumeration, and so offer a means to generalize the approach to mixtures and proteins with more complex PMFs.  相似文献   

19.
5-ω-Aminopropyl-uracil bearing PNA monomers are synthesized for solid phase oligomer synthesis using FMOC protection. Several PNA oligomers with differing amounts of aminopropyluracil modification were prepared. These oligomers were found to associate with complementary DNA oligonucleotides.  相似文献   

20.
Tetrafunctional lactic acid oligomers with low molecular weight ethylene glycol cores were synthesized and characterized to assess their applicability to orthopaedics. Utilizing a visible light photoinitiating system, these oligomers polymerize within minutes to form highly crosslinked networks and, thus, have potential for in situ formation. Varying the oligomer structure readily alters the physical properties of the resultant polymer networks. For instance, mechanical properties were highly dependent on the number of lactic acid and ethylene glycol units in the oligomer backbone. Additionally, polymer mass loss ranged from ∼30 to 60% within 8 weeks of degradation time depending on the oligomer chemistry. Mechanical properties decreased with degradation of these polymers, indicating a bulk degradation mechanism. Finally, scaffolds with a controlled architecture were fabricated from these oligomers that show potential for tissue‐engineering applications. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 683–692, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号