首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)22‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)23‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses.  相似文献   

2.
We report the synthesis and characterization of a novel 4‐(dimethylamino)pyridinium‐substituted η3‐cycloheptatrienide–Pd complex which is free of halide ligands. Diacetonitrile{η3‐[4‐(dimethylamino)pyridinium‐1‐yl]cycloheptatrienido}palladium(II) bis(tetrafluoroborate), [Pd(C2H3N)2(C14H16N2)](BF4)2, was prepared by the exchange of two bromide ligands for noncoordinating anions, which results in the empty coordination sites being occupied by acetonitrile ligands. As described previously, exchange of only one bromide leads to a dimeric complex, di‐μ‐bromido‐bis({η3‐[4‐(dimethylamino)pyridinium‐1‐yl]cycloheptatrienido}palladium(II)) bis(tetrafluoroborate) acetonitrile disolvate, [Pd2Br2(C14H16N2)2](BF4)2·2CH3CN, with bridging bromide ligands, and the crystal structure of this compound is also reported here. The structures of the cycloheptatrienide ligands of both complexes are analogous to the dibromide derivative, showing the allyl bond in the β‐position with respect to the pyridinium substituent. This indicates that, unlike a previous interpretation, the main reason for the formation of the β‐isomer cannot be internal hydrogen bonding between the cationic substituents and bromide ligands.  相似文献   

3.
The first examples of neutral and cationic bismuth complexes bearing β‐ketoiminato ligands were isolated by employing salt metathesis route. BiCl3 reacts with [O=C(Me)]CH[C(Me)N(K)Ar] ( 1 ) resulting in a homoleptic β‐ketoiminato bismuth complex Bi[{O=C(Me)}CH{C(Me)NAr}]3 ( 2 ). The reaction between BiCl3 and [(CH2)2{N(K)C(Me)CHC(Me)=O}2] ( 3 ) leads to the formation of a cationic bismuth complex [Bi{(CH2)2(NC(Me)CHC(Me)=O)2}]4[Bi2Cl10] ( 4 ).  相似文献   

4.
Crystals of the title compound C49H33N5ClGa·1/2C5H5N·1/2C5H12 [Ga(py)(Cl)(TPP)]·1/2(py)·1/2(n-pen) are monoclinic, P21/n, a = 13.162(2), b = 23.422(6), c, = 14.677(2) Å, β = 101.47(1)°, and Z = 4. The crystal structure refined to R = 0.056 for 2249 observed reflections. The coordination polyhedron of the gallium atom is an octahedron, and the distances between the central metal and axial ligands are Ga-Cl = 2.328(1) and Ga-py = 2.274(3) Å. The gallium atom is displaced slightly out of the porphyrin plane towards Cl, 0.14 Å from the 4N plane and 0.16 Å from the mean porphinato plane, with an average Ga-N distance of 2.01 Å. Although the complex is isostructural with the Mn and Co analogs, it is the first reported structure of a monomeric hexacoordinate gallium(III) porphyrin.  相似文献   

5.
Milling two equivalents of K[1,3‐(SiMe3)2C3H3] (=K[A′]) with MgX2 (X=Cl, Br) produces the allyl complex [K2MgA′4] ( 1 ). Crystals grown from toluene are of the solvated species [((η6‐tol)K)2MgA′4] ([ 1 ?2(tol)]), a trimetallic monomer with both bridging and terminal (η1) allyl ligands. When recrystallized from hexanes, the unsolvated 1 forms a 2D coordination polymer, in which the Mg is surrounded by three allyl ligands. The C?C bond lengths differ by only 0.028 Å, indicating virtually complete electron delocalization. This is an unprecedented coordination mode for an allyl ligand bound to Mg. DFT calculations indicate that in isolation, an η3‐allyl configuration on Mg is energetically preferred over the η1‐ (σ‐bonded) arrangement, but the Mg must be in a low coordination environment for it to be experimentally realized. Methyl methacrylate is effectively polymerized by 1 , with activities that are comparable to K[A′] and greater than the homometallic magnesium complex [{MgA′2}2].  相似文献   

6.
Seventeen compounds having a variety of substituents at the 3- and 5′-positions of 2′-deoxy-5-fluorouridine (5-FUdR) and 5-fluorouridine (5-FUR) were synthesized, and their γ-radiolysis in aqueous solutions were studied. The compounds having thioureido (RNHCSNH, R  H, PhCH2, acyl) and thiocarbonylamino (XCSNH, X  PhCH2S, PhO) groups at the 3-position of 5-FUdR were efficiently cleaved to give 5-FUdR with high G values upon γ-irradiation of their aqueous solutions. The active species for these cleavage reactions were hydrated electron (e aq), H and HO. However, the compounds having a dimethylsulfoxyimino group at 3-position of 5-FUdR and 5-FUR afforded 5-FUdR and 5-FUR only under the radiolysis conditions where e aq becomes a principal active species. The compound having a 2-benzoylthiazoylthiocarbonylamino group at the 3-position of 5-FUdR showed the highest reactivity toward HO.. The mechanisms of these γ-radiolysis reactions are discussed. The examination of anticellular activities of γ-irradiated compounds having a thiocarbonylamino group at the 3-position of 5-FUdR toward murine Sarcoma 180 cells revealed that these compounds may be utilized as a candidate for a radiation-induced drug (RID).  相似文献   

7.
In the title compound, [Co(tpp)(NO2)(H2O)]·2dmf or [Co(C44H28N4)(NO2)(H2O)]·2C3H7NO, a distorted octahedral CoIII complex shows an orientational disorder such that the positions of the nitro and aqua ligands are exchanged. As a result, the averaged structure has an inversion centre at the Co atom. The di­methyl­form­amide mol­ecule also has a positional disorder.  相似文献   

8.
Reaction of [Cp* RuCl2]2 with -alanine ( -alaH) in methanol at room temperature in the presence of NaOMe yields the complex Na[Cp* RuCl( -ala)] (1), which contains a five-membered N,O-coordinated chelate ring. The analogous complex Na[Cp* RuCl( -phe)] (2) is obtained under similar conditions but at 0°C in 90% yield. At temperatures above 20°C both 2 and the η6-coordinated complex [Cp* Ru( -pheH)]Cl (4) are obtained, with the proportion of the latter increasing with temperature. Compound 4 is obtained in 88% yield by refluxing [Cp* RuCl2]2 and -phenylalanine ( -pheH) in CH3OH/CH3ONa followed by separation from 2. The analogous ruthenium(II) sandwich complexes 510 were obtained from -tyrosine and -tryptophane and various derivatives. [Cp* Ru( -met)] (3), prepared by the reaction of [Cp* RuCl2]2 with -methionine ( -metH) in CH3OH/CH3ONa, displays N,O,S-coordination.  相似文献   

9.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

10.
Treatment of Pd(PPh3)4 with 2‐bromo‐3‐hydroxypyridine [C5H3N(OH)Br] and 3‐amino‐2‐bromopyridine [C5H3N(NH2)Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C5H3N(OH)}(Br)], 2 and [Pd(PPh3)21‐C5H3N(NH2)}(Br)], 3 , by substituting two triphenylphosphine ligands, respectively. In dichloromethane solution of complexes 2 and 3 at ambient temperature for 3 days, it undergo displacement of the triphenylphosphine ligand to form the dipalladium complexes [Pd(PPh3)Br]2{μ,η2‐C5H3N(OH)}2, 4 and [Pd(PPh3)Br]2{μ,η2‐C5H3N(NH2)}2, 5 , in which the two 3‐hydroxypyridine and 3‐aminopyridine ligands coordinated through carbon to one metal center and bridging the other metal through nitrogen atom, respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

11.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

12.
Two N3O2 pentadentate ligands, BMPP and BPPP, were prepared for synthesizing highly efficient nickel catalysts, [Ni(BMPP)(CH3CN)](ClO4)2 ( 1 ) and [Ni(BPPP)(CH3CN)](BPh4)(ClO4) ( 2 ), for thia‐Michael addition of thiophenols to α,β‐enones. X‐ray structures of 1 and 2 revealed that a labile CH3CN molecule was bound to the nickel center of the catalysts. ESI‐MS spectroscopy indicated that thiolate replaced the bound CH3CN molecule and coordinated to the nickel center during the catalytic cycle.  相似文献   

13.
The title complex, [Gd2(C3H7NO2)4(H2O)8](ClO4)6, contains centrosymmetric dimeric [Gd2(Ala)4(H2O)8]6+ cations (Ala is α‐alanine) and perchlorate anions. The four alanine mol­ecules act as bridging ligands linking two Gd3+ ions through their carboxylate O atoms. Each Gd3+ ion is also coordinated by four water mol­ecules, which complete an eightfold coordination in a square‐antiprism fashion. The perchlorate anions and the methyl groups of the alanine ligands are disordered.  相似文献   

14.
The title complex, [Mo2(C5H5)2(CH3O)2(C4H11Si)2(NO)2], is formed in high yield by treating [CpMo(NO)(CH2SiMe3)2] (Cp is cyclo­penta­dienyl) with methanol. The nitro­syl ligands are nearly linear [O—N—Mo 170.1 (4) and 170.1 (5)°], with short Mo—N bonds [1.769 (4) and 1.776 (4) Å] and long N—O bonds [1.216 (5) and 1.201 (4) Å]. The central four‐membered Mo2O2 ring exhibits an average Mo—O bond length of 2.15 Å.  相似文献   

15.
The lanthanum(III) complexes tris(3,5‐diphenylpyrazolato‐κ2N,N′)tris(tetrahydrofuran‐κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C15H11N2)3(C4H8O)3]·C4H8O, (I), and tris(3,5‐diphenyl‐1,2,4‐triazolato‐κ2N1,N2)tris(tetrahydrofuran‐κO)lanthanum(III), [La(C14H10N3)3(C4H8O)3], (II), both contain LaIII atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer‐distorted octahedral geometry, while complex (II) has a fac‐distorted configuration. The difference in the coordination geometries and the existence of asymmetric La—N bonding in the two complexes is associated with intramolecular C—H...N/O interactions between the ligands.  相似文献   

16.
In the title compound, (η5‐2,5‐di­methyl­pyrrolyl)[(7,8,9,10,11‐η)‐7‐methyl‐7,8‐dicarba‐nido‐undecaborato]­cobalt(III), [3‐Co{η5‐[2,5‐(CH3)2‐NC4H2]}‐1‐CH3‐1,2‐C2B9H10] or [Co(C3H13B9)(C6H8N)], the CoIII atom is sandwiched between the pentagonal faces of the pyrrolyl and dicarbollide ligands, resulting in a neutral mol­ecule. The C—C distance in the dicarbollide cage is 1.649 (3) Å.  相似文献   

17.
The new clusters [H4Ru4(CO)10(μ‐1,2‐P‐P)], [H4Ru4(CO)10(1,1‐P‐P)] and [H4Ru4(CO)11(P‐P)] (P‐P=chiral diphosphine of the ferrocene‐based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal–metal bond of the ruthenium tetrahedron in the “conventional” manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H4Ru4(CO)10(1,1‐Walphos)] clusters isomerise to the corresponding [H4Ru4(CO)10(μ‐1,2‐Walphos)] clusters, whereas the Josiphos‐containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α‐unsaturated carboxylic acids and the prochiral methyl ester (E)‐methyl 2‐methylbut‐2‐enoate. High conversion rates (>94 %) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos‐containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99–100 %), product selectivities (99–100 % in most cases) and good enantioselectivities, reaching 90 % enantiomeric excess (ee) in certain cases, were observed for the Walphos‐containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high‐pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters (P‐P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P‐P)(carboxylato)2] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species.  相似文献   

18.
Novel 2‐(1‐substituted‐1H‐1,2,3‐triazol‐4‐yl)pyridine (pytl) ligands have been prepared by “click chemistry” and used in the preparation of heteroleptic complexes of Ru and Ir with bipyridine (bpy) and phenylpyridine (ppy) ligands, respectively, resulting in [Ru(bpy)2(pytl‐R)]Cl2 and [Ir(ppy)2(pytl‐R)]Cl (R=methyl, adamantane (ada), β‐cyclodextrin (βCD)). The two diastereoisomers of the Ir complex with the appended β‐cyclodextrin, [Ir(ppy)2(pytl‐βCD)]Cl, were separated. The [Ru(bpy)2(pytl‐R)]Cl2 (R=Me, ada or βCD) complexes have lower lifetimes and quantum yields than other polypyridine complexes. In contrast, the cyclometalated Ir complexes display rather long lifetimes and very high emission quantum yields. The emission quantum yield and lifetime (Φ=0.23, τ=1000 ns) of [Ir(ppy)2(pytl‐ada)]Cl are surprisingly enhanced in [Ir(ppy)2(pytl‐βCD)]Cl (Φ=0.54, τ=2800 ns). This behavior is unprecedented for a metal complex and is most likely due to its increased rigidity and protection from water molecules as well as from dioxygen quenching, because of the hydrophobic cavity of the βCD covalently attached to pytl. The emissive excited state is localized on these cyclometalating ligands, as underlined by the shift to the blue (450 nm) upon substitution with two electron‐withdrawing fluorine substituents on the phenyl unit. The significant differences between the quantum yields of the two separate diastereoisomers of [Ir(ppy)2(pytl‐βCD)]Cl (0.49 vs. 0.70) are attributed to different interactions of the chiral cyclodextrin substituent with the Δ and Λ isomers of the metal complex.  相似文献   

19.
The reaction of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , with EtOCS2K and C4H8NCS2NH4 in dichloromethane at room temperature yielded the seven coordinated ethyldithiocarbonate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2COEt)(η2‐SCNMe2)(PPh3)] 2 , and the dithiocarbamate thiocarbamoyl‐molybdenum complex [Mo(CO)22‐S2CNC4H8)(η2‐SCNMe2)(PPh3)] 3 . The geometry around the metal atom of compounds 2 and 3 are capped octahedrons as revealed by X‐ray diffraction analyses. The thiocarbamoyl and ethyldithiocarbonate or pyrrolidinyldithiocarbamate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, respectively. Structure parameters, NMR, IR and Mass spectra are in agreement with the crystal chemistry of the two compounds.  相似文献   

20.
The cadmium(II) coordination polymer poly[[(pyrazino[2,3‐f][1,10]phenanthroline‐κ2N8,N9)cadmium(II)]‐μ3‐naphthalene‐1,4‐dicarboxylato‐κ5O1:O1,O1′:O4,O4′], [Cd(C12H6O4)(C14H8N4)]n, contains two CdII cations, two pyrazino[2,3‐f][1,10]phenanthroline (L) ligands and two naphthalene‐1,4‐dicarboxylate (1,4‐ndc) anions in the asymmetric unit. Both CdII ions are in a distorted CdO5N2 monocapped octahedral coordination geometry. Both unique 1,4‐ndc ligands are bonded to three CdII ions. In these modes, tetranuclear clusters are formed in which four CdII ions are bridged by the carboxylate groups of the 1,4‐ndc ligands to form discrete rods. The tetranuclear cadmium carboxylate clusters act as rod‐shaped secondary building units (SBUs) within the structure. The SBUs are connected together by the aromatic backbone of the dicarboxylate ligands, connecting the clusters into a three‐dimensional α‐polonium net. The title compound represents the first α‐polonium net constructed from rod‐like clusters in coordination polymers. The result indicates that an appropriate combination of dicarboxylate and aromatic chelating ligands is critical to the formation of high‐dimensional structures based on metal clusters in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号