首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.  相似文献   

2.
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) have recently received much attention in discussions regarding the negative impacts of particulate matter (PM) on human health and the environment. The National Institute of Standards and Technology provides several environmental matrix standard reference materials (SRMs) with certified and reference values for polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs. In this study, the concentrations of oxygenated PAHs are determined in three air PM SRMs (1649b, 1648a, and 2786) and three diesel PM SRMs (1650b, 2975, and 1975) using two independent gas chromatography–mass spectrometry methods. Concentrations of oxy-PAHs were at the milligrams per kilogram level with higher overall concentrations in diesel PM (up to 50 mg/kg for 9,10-anthraquinone). One of the highest oxy-PAH concentrations (up to 5 mg/kg) measured in the air particulate SRMs was for 7,12-benz[a]anthracenquinone. These results suggest that oxygenated PAHs should not be neglected in the analysis of PM as their concentrations can be as high as those of some PAHs and are one to two orders of magnitude higher than those for nitro-PAHs.  相似文献   

3.
Pressurised microwave-assisted extraction was used to extract a complex mixture containing polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and heavy n-alkanes from a particularly refractory carbonaceous material resulting from the combustion in a diesel engine. A second-order central composite design was used to determine the optimal conditions of extraction in terms of time, temperature, volume and nature of extracting solvent from spiked diesel soots. To begin, methylene chloride, tetrahydrofuran and chloroform were tested for extracting the spiked diesel particulates; however, the nature of these solvents was not really an influential factor. Volume was the most influential factor and was kept at a medium level to enhance the extraction of heavy PAHs without introducing an important dilution factor. Temperature and time were not influential as main factors but interacted with the other factors. Finally, high temperature and duration associated with a medium volume of methylene chloride were better for the extractions. After this optimisation, five-ring and six-ring PAHs were nevertheless not satisfactorily desorbed. Other solvents were therefore tested. Only aromatic ones, and particularly heterocyclic aromatic solvents, managed to desorb the heaviest PAHs. Pyridine, with its both aromatic and its basic character, was the most successful solvent. Desorption was even complete with an addition of 17% of diethylamine into pyridine. So, using MAE, we succeeded in extracting quantitatively, from the spiked refractory diesel soot surface, two-ring to six-ring PAHs, heavy n-alkanes and short nitrated PAHs. However, heavy nitrated PAHs were better extracted with a small addition of acetic acid (1%) into pyridine instead of a basic cosolvent.  相似文献   

4.
Several methods of extraction were optimized to extract polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives and heavy n-alkanes from a highly adsorptive particulate matter resulting from the combustion of diesel fuel in a diesel engine. This particular carbonaceous particulate matter, collected at high temperatures in cordierite diesel particulate filters (DPF), which are optimized for removing diesel particles from diesel engine exhaust emissions, appeared extremely refractory to extractions using the classical extracting conditions for these pollutants. In particular, the method of accelerated solvent extraction (ASE) is described in detail here. Optimization was performed through experimental design to understand the impact of each factor studied and the factors’ possible interactions on the recovery yields. The conventional extraction technique, i.e., Soxhlet extraction, was also carried out, but the lack of quantitative extractions led us to use a more effective approach: hot Soxhlet. It appeared that the extraction of the heaviest PAHs and nitroPAHs by either the optimized ASE or hot Soxhlet processes was far from complete. To enhance recovery yields, we tested original solvent mixtures of aromatic and heteroaromatic solvents. Thereafter, these two extraction techniques were compared to microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE). In every case, the only solvent mixture that permitted quantitative extraction of the heaviest PAHs from the diesel soot was composed of pyridine and diethylamine, which has a strong electron-donor character. Conversely, the extraction of the nitrated PAHs was significantly improved by the use of an electron-acceptor solvent or by introducing a small amount of acetic acid into the pyridine. It was demonstrated that, for many desirable features, no single extraction technique stound out as the best: ASE, MAE or SFE could all challenge hot Soxhlet for favourable extractions. Consequently, the four optimized extraction techniques were performed to extract the naturally polluted diesel soot collected inside the DPF. Comparisons with the NIST standard reference material SRM 1650b showed that the soot collected from the DPF contained 50% fewer n-alkanes, and also markedly lower levels of PAHs (44 less concentrated) than SRM 1650b, and that the ratio of nitroPAHs to PAHs was increased. These results were attributed to the high temperatures reached inside the particulate filter during sampling runs and to the contribution of the catalytic DPF to aromatic and aliphatic hydrocarbons abatement.  相似文献   

5.
使用色谱-质谱联用中的选择离子监测的方法选择性地检测柴油机排气中的多环芳香烃,采用14种多环芳香烃混合标准样品绘制校正曲线,以外标法对柴油机排气微粒中的PAHs进行定量分析。实验结果表明,该方法能够减少其它类有机成份的干扰,快速、准确地测量柴油机排气微粒中多环芳香烃的含量,且重复性较好,相对标准偏差低于 12%(n=6),检出限为3.5~7.0pg/m3,样品的回收率为79%~89%,方法用于柴油机排气微粒中多环芳香烃排放量的测定取得了满意的效果。  相似文献   

6.
Physicochemical characteristics and hydrocarbon composition of highly aromatic wastes (light gas oil from catalytic cracking, pyrolysis tar, coal tar, coal gasification tar) as a feedstock for producing high-density jet fuels are considered. The hydrogenation reactions of polycyclic aromatic hydrocarbons, including mixtures of hydrocarbons with different numbers of rings, are described. Catalysts for hydrogenation of highly aromatic waste to obtain fuel fractions are considered. Particular attention is paid to catalyst deactivation in the course of processing of this feedstock. A separate section deals with the choice and implementation of procedures for processing highly aromatic feedstock to obtain jet and diesel fuels.  相似文献   

7.
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.  相似文献   

8.
A method is proposed for production of environmentally friendly diesel fuel, including five-step countercurrent extraction of aromatic hydrocarbons from the hydrofined diesel fraction with dimethylformamide or dimethylacetamide containing 3-5 wt % H2O and pentane followed by regeneration of the extractants from the extract phase by azeotropic distillation. The process allows production of diesel fuel with the content of aromatic hydrocarbons below 10 wt %. Another product is a petroleum aromatic solvent like Nefras AR-150/330.  相似文献   

9.
Particle-associated polycyclic aromatic hydrocarbons (PAHs) collected in urban air of Beijing were studied using a gas chromatograph mass spectrometer (GC/MS). The average concentration of particle-associated PAHs measured in this work was in the range from 28.53 to 362.15 ng/m3, which suggested a serious pollution level of PAHs in Beijing. The results also showed that the concentration of PAHs in the winter was distinctly higher than that in summer and spring. Benzo(a)pyrene (BaP) and benzo(a)pyrene-equivalent carcinogenic power (BaPE) were adopted to evaluate the PAHs pollution state at the sampling site. Through some diagnostic ratios, it can be concluded that traffic exhaust, especially vehicles with diesel engines, and domestic coal-burning heaters might have a prominent contribution to the PAHs concentration.  相似文献   

10.
为研究不同含氧燃料与柴油掺混后碳烟降低机理, 本文在自行设计的燃烧器上构建部分预混层流火焰, 采用甲苯和正庚烷混合物(T20, 20%(体积分数)甲苯、80%正庚烷)作为柴油替代物,并分别添加甲醇、乙醇、正丁醇、丁酸甲酯和2,5-二甲基呋喃(DMF), 且保证混合燃料的含氧量均为4%. 进而应用激光诱导荧光法和激光诱导炽光法分别测量不同混合燃料的火焰中多环芳香烃(PAHs)的荧光光谱和碳烟浓度. 结果表明: 通过PAHs的荧光光谱可测量不同燃料火焰中PAHs的生成和增长历程. 四环芳香烃(A4)的生成氧化规律和碳烟基本一致, 说明通过分析A4变化可以预测碳烟变化. 添加含氧燃料后, T20燃料中甲苯含量降低是导致PAHs的荧光光谱强度降低和碳烟生成量减少的主要原因; 同时不同含氧燃料本身对多环芳香烃的生成贡献能力也是影响PAHs的荧光强度和碳烟生成的重要原因. 含氧量相当时, 掺混正丁醇后PAHs的荧光光谱强度和碳烟浓度比添加甲醇、乙醇、丁酸甲酯和DMF这四种含氧燃料的更低. 因此从含氧燃料结构来讲, 正丁醇掺混入T20燃料中降低PAHs和碳烟作用最显著.  相似文献   

11.
A case study is presented in which advanced chemical fingerprinting and data interpretation techniques are used to characterize and compare the weathering processes of six oil spillages made under controlled conditions (including the heavy oil released after the Prestige tanker sunk off the Galician coast-NW Spain on 2002). A tiered analytical approach using gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) was applied along with two different approaches for 3-way analyses; namely, generalized Procrustes rotation, and matrix-augmented principal components analysis. Results showed that the two 3-way chemometric techniques leaded to essentially the same conclusions when analyzing three sets of compounds fingerprinting the spilled hydrocarbons (aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and a set of diagnostic ratios). A steady evolution on the weathering of the oils was observed with both techniques, but for the diagnostic ratios. The variables involved on the weathering were the lightest aliphatic hydrocarbons and a general combination of the PAHs, which differentiated mostly among the light and the heavy products (fuel oils).  相似文献   

12.
A method based on the combination of solid-phase extraction (SPE) with gas chromatography-mass spectrometry (GC/MS) for detailed chemical fingerprinting of biodiesel/petrodiesel blends was developed in the present study. Forensic identification, commonly referred to as chemical fingerprinting, is based on the relative distributions of individual aliphatic hydrocarbons, aromatic hydrocarbons, fatty acid alkyl esters, and free sterols. Fractionation of fuel samples is optimized for the separation of fatty acid esters and free sterols from petroleum hydrocarbons into four fractions: aliphatic, aromatic, fatty acid ester, and polar components. The final recoveries of aliphatic and aromatic hydrocarbons were determined to be in the range of 65-103%, 73-105% for FAMEs, and 78-103% for free sterols in the polar fraction. Excellent separation with negligible crossover of components with different polarities between fractions was observed. Quantitative analysis of blend levels and individual chemical distribution were achieved. The method has great potential for the identification of biodiesel in diesel fuel blends and could form the basis of a method for characterization of biodiesel-contaminated environmental samples.  相似文献   

13.
A study has been made of the effect of additives to the fuel of a turbulent diffusion flame on the formation of soot and polycyclic aromatic hydrocarbons (PAHs). Fuels containing a polystyrene thickener doped with benzene proved to have many advantages over unthickened fuels. Most significant were an increase in the burning time and the flash point. Nevertheless, polystyrene and benzene additives to a considerable extent increased the formation of soot and PAHs. The analysis of PAHs in this study was made by capillary gas chromatography (GC) and capillary gas chromatography/mass spectrometry (GC/MS). A total of 42 individual compounds were characterized by their retention indices and mass spectra.  相似文献   

14.
Small amounts of polycyclic aromatic hydrocarbons (PAHs) in aqueous solution were almost completely adsorbed on barium salts of copper (II) sulphophthalocyanines and cobalt (II) phthalocyanine, which were precipitated from the solution. Recoveries of the PAHs from the precipitates by thermal desorption gas chromatography were 71–95%. The method is useful for the concentration and analysis of medium molecular weight, thermally stable PAHs.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs), organic compounds formed by at least two condensed aromatic rings, are ubiquitous environmental pollutants that are produced by incomplete combustion of organic materials. PAHs have been classified as carcinogenIC to humans by the International Agency for Research on Cancer, because they can bind to DNA, causing mutations. Therefore, the levels of PAHs in human urine can be used as an indicator for potential carcinogenesis and cell mutation. An analytical method was developed for the accurate measurement of PAHs in urine using high‐resolution gas chromatography–mass spectrometry. Urine samples were extracted by an Oasis HLB extraction cartridge after enzymatic hydrolysis with a β‐glucuronidase/arylsulfatase cocktail. The 18 PAHs were separated using an Agilent DB‐5 MS capillary column (30 m × 0.25 mm, 0.25 μm) and monitored by time‐of‐flight mass spectrometry. Under the optimized method, the linearity of calibration curves was >0.994. The limits of detection at a signal‐to‐noise ratio of 3 were 10–100 ng/L. The coefficients of variation were in the range of 0.4–9.0%. The present method was highly accurate for simultaneous determination of 18 PAHs in human urine and could be applied to monitoring and biomedical investigations to check exposure of PAHs.  相似文献   

16.
Solvent extraction procedures with six different solvents on aqueous model systems of aliphatic (C12-C22) and polynuclear aromatic hydrocarbons (PAHs: Naphthalene, acenaphtene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) were studied for the analysis in the trace concentration range (20-50 ng ml-1) by fused silica capillary gas chromatography. Recovery efficiencies, reproducibilities and detection limits for each analyte and procedure are reported. The effect of the PAHs on the extracting rate of the aliphatic hydrocarbons at the trace concentration range is discussed.  相似文献   

17.
Pressurised fluid extraction (PFE) was used for the measurement of 13 polycyclic aromatic hydrocarbons (PAHs) adsorbed on different types of particles: two model particles (PAH-coated silica, PAH-coated graphite) and two natural atmospheric particles (urban dust and diesel exhaust, from NIST reference materials). Samples were analysed by gas chromatography coupled to mass spectrometry. Extraction efficiency was evaluated with internal standard recovery yields and was shown to depend on the nature of the particle, on the structure of the analytes and on the PAH concentration. Extraction conditions (toluene, 130°C, 130 bar, 2 × 8-min static cycles) were optimised to extract PAHs when strongly interacting with solid matrices and were validated by the analysis of two PAH-certified materials.  相似文献   

18.
The potential of using compound-specific stable carbon isotopic analysis for the source apportionment of environmental polycyclic aromatic hydrocarbons (PAHs) has already been demonstrated by the authors, and other researchers. PAHs arising from wood burning and vehicle emissions have been shown to exhibit different isotopic signatures, and the isotopic compositions of n-alkanes and PAHs produced from combustion of C3 and C4 plant species have been reported. 13C/12C isotopic ratios for PAHs derived from coal and wood pyrolysis and from diesel particulates have been noted to vary over a range by ca. 8 per thousand, which may provide a basis for source apportionment. In order to further improve the ability of stable isotope measurements to source apportion environmental PAHs, hydrogen stable isotopes (deltaD) of PAHs from a number of processes have been measured. The wide range of deltaD values, in conjunction with the delta13C values obtained, provide a much greater degree of differentiation between petrol and jet fuel derived PAHs, and between PAHs from different coal conversion processes, than the delta13C values alone.  相似文献   

19.
色谱/质谱联用技术分析测定贻贝中的多环芳烃   总被引:5,自引:0,他引:5  
马永安  刘彤 《分析化学》1997,25(12):1382-1385
介绍了GC-MS联用技术-物质征离子选择法测定贻贝中多环芳烃的分析方法,并就定性定量离子的选择,以及方法的准确度和精密度进行了探讨。结果表明,本方法适用于海洋生物贻贝,牡蛎中PAHs的分析测定。  相似文献   

20.
Young lignite from two locations in Sendai City, Japan, were analyzed for polynuclear aromatic compounds (PACs). Lignite samples were extracted with toluene and PACs were isolated by a compound-class-selective, reactive matrix clean-up. This clean-up separates all compounds of polynuclear aromatic structure, for example hydrocarbons and ketones and their primary metabolites, from interfering organic compounds. The result of this isolation procedure is, therefore, a group of a large number of polycyclic compounds with different functional groups. Further analysis is done by glass capillary gas chromatography. Perylene was identified as the only compound obtained by the reactive matrix clean-up of lignite samples from both locations. Concentrations were in the range of 1–10 mg kg−1. Conversely, PACs resulting from particulate emissions from fossil fuel combustion always contain isomeric PAHs (polynuclear aromatic hydrocarbons) with some polycyclic aromatic ketones and thousands of primary and secondary metabolites at very low concentrations. This was demonstrated for a sample of urban air particulate matter, which is the source of PAC contamination of surface soil. The absence of accompanying PAHs and polynuclear aromatic ketones in the lignite samples confirms that perylene did not originate from a combustion process. It is assumed that the high concentrations of perylene are the result of a reduction of perylene quinone. Thus, the high perylene content of the lignite samples investigated is of biogenic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号