首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-Methyl-N-2-propynyl-1-naphthalenecarboxamide, N-methyl-N-2-propynyl-1-naphthaleneacetamide, and N-methyl-N-3-butynyl-1-naphthalenecarboxamide undergo intramolecular Diels-Alder reactions at 190°, 250°, and 270° to give lactams 1,6 , and 9 , respectively. The cyclization temperatures are higher by 80-120° as compared to those of the corresponding anthracene derivatives. Elaboration of lactam 6 gave the trans-4a-aryldecahydroisoquinoline derivative 7a which, as the (-) isomer, was shown to have the same absolute stereochemistry as morphine.  相似文献   

2.
Reaction of N-methylaniline with 40% glyoxal yields 1-methyl-2-(N-methyl-N-phenylglycyl)-3-(N-methylanilino)indole ( 1a ) as the main product together with 1-methyl-3-(N-methylanilino)indole ( 1b ). The reaction appears to be general for aromatic secondary amines since N-ethylaniline and N-phenylbenzylamine yield the corresponding indoles. The structure of 1a has been verified by single crystal X-ray diffraction. Compound 1a (C25H25N3O) crystallized in the triclinic space group Pl? with cell dimensions a = 10.085(3)Å, b = 10.371(3)Å, c = 11.908(5)Å, α = 74.2(3)°, β = 74.7(3)° and γ = 60.7(2)° with Z = 2. The complete 1H and 13C nmr assignment of indoles 1a and 1b was achieved from two-dimensional HETCOR and COSY spectra with the aid of homonuclear and heteronuclear double resonance experiments.  相似文献   

3.
Several compatible mixtures of 2,2-bis[4-(N-4-benzocyclobutenyl) phthalimid-4-phenyl]hexafluoropropane (BCB) and 1,1′-(methylene di-4,1-phenylene)bismaleimide (BMI) were prepared according to the molar ratios (BCB : BMI): 1 : 1; 1 : 1.5; 1 : 3; 1.5 : 1. Complete compatibility of the mixtures was evidenced by a single initial Tg. All mixtures showed relatively low initial Tg's (61–70°C) and characteristic polymerization exotherms of benzocyclobutene-based systems (onset: 221–225°C; maximum: 257–259°C), providing an excellent processing window (ca. 155°C). The cured sample of the mixtures, pure BCB and BMI (250°C; N2; 8 h) were subjected to comparative isothermal gravimetric analysis (ITGA). After 200 h at 650°F (343°C) in circulating air, the cured BMI sample retained only 3% of its original weight, whereas the mixtures of BCB and BMI exhibited thermo-oxidative stabilities similar to BCB (13–15% weight loss). A model compound was synthesized from the intimate mixture of N-phenylmaleimide and N-benzocyclobutenyl phthalimide in 63% yield. The ITGA results and isolation of the model Diels–Alder adduct render strong support to the conviction that Diels–Alder polymerization is indeed the predominant curing process in the BCB/BMI system.  相似文献   

4.
The dianion of hydroxyacetone is readily generated with LDA in THF at -65°. This dianion reacts rapidly with N-methylisatoic anhydride ( 6 ) at -65° to furnish 2-hydroxymethyl-1-methylquinolin-4(1H)-one ( 12 ). The alcohol is oxidized to aldehyde 4 with manganese dioxide, and is subsequently converted to α,β-unsaturated ester 5 under Horner-Emmons conditions.  相似文献   

5.
Huang  Bin  Pan  Xuejun  Liu  Jingliang  Fang  Kai  Wang  Yu  Gao  Jianpei 《Chromatographia》2010,71(1-2):149-153

Most previously described derivatization procedures with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) or N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) for the GC–MS analysis of steroids, such as estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethynylestradoil (EE2), used a heating process of 45–80 °C (typically 70 °C) for 25–60 min, usually in combination with a catalyst. However, we found that it is not necessary to heat and add catalyst for the derivatization with BSTFA. Best reaction conditions for MSTFA are heating at 70 °C for 10 min. Derivatization of EE2 using MSTFA without heating results in three products: TMS-E1, mono-TMS-EE2 and di-TMS-EE2.

  相似文献   

6.
Reaction of (N-alkyl-N-phenyl)ethoxycarbonylacetamides with β-naphthol in the presence of phosphorus oxychloride afforded 1-oxo-3-(N-alkyl-N-phenyl)amino-1H-naphtho[2,1-b]pyrans. These compounds underwent reaction with N,N-dimethylformamide-phosphorus oxychloride at 95° yielding a mixture of 14H-naphtho[1′,2′:5,6]pyrano[2,3-b]quinoline derivatives and 1-oxo-2-formyl-3-(N-alkyl-N-phenyl)amino-9-oxy-1H-phenalene. When the same reaction was performed at 140°, only 14-oxo-14H-naphtho[1′,2′:5,6]pyrano[2,3-b]quinoline was obtained in a very good yield. The structures of such compounds were demonstrated by spectral data and by chemical transformations. On the other hand, the expected formylation in the 2 position was achieved when 1-oxo-3-(N-alkyl-N-benzyl)amino-1H-naphtho[2,1-b]pyrans reacted with N,N-dimethylformamide-phosphorus oxychloride.  相似文献   

7.
Polyhydrouracils and polyiminoimidazolidinones were prepared by ring formation along the chain of appropriately substituted polyureas. Cyclization of 2-carbomethoxy-ethyl-substituted polyureas in a polyphosphoric acid medium gave the polyhydrouracils. The polyurea precursors were prepared from N,N′-bis(2-carbomethoxyethyl)-1,6-hexanediamine and N,N′-di(2-carbomethoxyethyl)-1,4-cyclohexanebis(methylamine) with methylenebis(4-phenyl isocyanate), 2,4-toluene diisocyanate, and 3,3′-dimethoxy-4,4′-biphenylene diisocyanate. These polyureas were soluble in m-cresol, dimethylformamide, and chloroform, had inherent viscosities of up to 0.8, and could be cast into tough films. The polyhydrouracils had similar physical properties and could also be cast into films. The polyhydrouracils melted at temperatures 100–150°C higher than their polyurea precursors. Polyiminoimidazolidinones were prepared by cyclization of α-cyanoalkyl-substituted polyureas in the presence of n-butylamine. The intermediate polyureas, which were not isolated, were prepared from methylenebis(4-phenyl isocyanate) with N,N′-bis(1-cyanocyclohexyl)-1,6-hexanediamine, N,N′-bis(1-cyanocyclohexyl)-m-xylylenediamine and N,N′-bis(1-cyanocyclopentyl)-1,6-hexanediamine. The polyiminoimidazolidinones were soluble in m-cresol, dimethylformamide, and chloroform and had low inherent viscosities of 0.14–0.28. Thermogravimetric analyses showed that the polyhydrouracils underwent rapid decomposition at 400°C, whereas an analogous unsubstituted polyurea decomposed at 300°C. On the other hand, the polyiminoimid-azolidinones showed no greater thermal stability than the unsubstituted polyurea.  相似文献   

8.
The crystal structures of N,N′-(1,2-phenyl­ene)­bis­(pyridine-2-carbox­amide), C18H14N4O2, (I), and N,N′-(1,2-cyclo­hexane­diyl)­bis­(pyridine-2-carbox­amide) have been determined, the latter compound as the toluene hemisolvate, C18H20N4O2·0.5C7H8, (II). In (I), the benzene ring is nearly coplanar with one of the pyridine rings and forms a dihedral angle of 59.4 (1)° with the other. However, in (II), the dihedral angle of the two pyridine rings is 70.0 (1)°.  相似文献   

9.
The sulfate conjugate 2 of N-(3,5-dichlorophenyl)-2-hydroxysuccinimide, a potential metabolite of the nephrotoxicant N-(3,5-dichlorophenyl)succinimide, is prepared from the 2-hydroxysuccinimide ( 1 ) by the reaction with chlorosulfonic acid in chloroform and ether mixture at ?78°.  相似文献   

10.
1-(6-Bromohexyloxy)-4-propargyloxybenzene upon quaternization with 3-dimethylamino-1-propanol and N,N-dimethyldodecylamine produced two new inhibitor molecules: N-[6-(4-Propargyloxyphenoxy)hexyl]-N,N-dimethyl-N-(3-hydroxypropyl)ammonium bromide (PHAB) and N-[6-(4-Propargyloxyphenoxy)hexyl]-N,N-dimethyl-N-dodecylammonium bromide (PDAB), respectively, in excellent yields. The inhibitor molecules were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The inhibitors were evaluated for X-60 mild steel corrosion in 15 wt.% HCl using different electrochemical and gravimetric techniques. The potentiodynamic polarization confirms both the inhibitors as mixed-type corrosion inhibitors. A low concentration (15 ppm) of PDAB has demonstrated excellent corrosion inhibition efficiencies of 97%, 98%, and 86% at 25 °C, 50 °C, and 70 °C, respectively, for 24 h exposure time. SEM and EDX spectra reveal that the adsorptions of corrosion inhibitors on X-60 mild steel create a protective film that serves as a barrier to mitigate the corrosion process. The X-ray photoelectron spectroscopy confirmed the chemical interaction between the corrosion inhibitors and mild steel, which was predicted by the Langmuir adsorption model. Assembly of inhibitive motifs of the alkyne, π-electron-rich aromatic, quaternary ammonium and C12 alkyl chain hydrophobe in PDAB has augmented its inhibiting action.  相似文献   

11.
Poly[(4-N-ethylene-N-ethylamino)-α-cyanocinnamate] was prepared by solution esterification of (4-N-ethyl-N-(2-hydroxyethyl) amino)-α-Cyanocinnamic acid and by melt transesterification of ethyl (4-N-ethyl-N-(2-hydroxyethyl) amino)-α-cyanocinnamate. The melt transesterification generally yielded polymer with a number-average molecular weight of about 10,200 by gel permeation chromatography (GPC) versus polystyrene standards. The polymer was found to be amorphous with a glass transition temperature of about 103°C by differential scanning calorimetry (DSC). The solution esterification generally gave a polymer with a number-average molecular weight of about 2200 by GPC versus polystyrene standards. This polymer was found to have a glass transition temperature varying between 60 and 90°C by DSC. The infrared (IR) spectrum of the polymer made from both methods were analyzed in detail. The 1H- and 13C-NMR spectra of the meltsynthesized ethyl cinnamate derivative polymer are consistent with the reported structure.  相似文献   

12.
Temperature dependent proton magnetic resonance spectra of dichloro- and dimethyltin(IV) bis(N,N-di-isopropyl-dithiocarbamate) ( 1 and 2 , respectively), dimethylchlorotin(IV) N,N-di-isopropyldithiocarbamate ( 3 ), dimethyltin(IV) bis(N-isopropyldithiocarbamate) ( 4 ), S-methyl-N,N-di-isopropyldithiocarbamate ( 5 ) and S-methyl-N-isopropyldithiocarbamate ( 6 ) were measured in halogenated hydrocarbons or CS2. The internal rotation around the isopropyl–nitrogen bond of 1, 2, 3 and 5 is restricted below ?30°C, and that of 4 and 6 below ?70°C; 1, 2 and 3 exist as only one conformer in dichloromethane, while 5 exists as two rotational isomers with respect to the isopropyl–nitrogen bond with a mole ratio of about 2·7:1·0 in CS2 below ?30°C. At this temperature, 6 exists as two stereoisomers in CS2 with a mole ratio of about 1·2:1·0, although there is no stereoisomer in 4 . From these results, possible conformations of the compounds at low temperature are proposed and the assignments of each proton signal are described.  相似文献   

13.
Reaction of readily available 2-methyl-4-formylthiazole ( 1 ) with glyoxal and ammonia gave 2-(2-methyl-4-thiazolyl)imidazole ( 2 ). Nitration of 2 with a mixture of nitric acid-sulfuric acid at 100° yielded 2-(2-methyl-4-thiazolyl)-4,5-dinitroimidazole ( 3 ) as the sole reaction product, while nitration at 65° afforded 2-(2-methyl-4-thiazolyl)-4-(or 5)-nitroimidazole ( 4 ). N-Methylation of compound 4 in the presence of base gave 1-methyl-2-(2-methyl-4-thiazolyl)4-nitroimidazole ( 6 ), whereas N-methylation with diazomethane afforded 1-methyl-2-(2-methyl-4-thiazolyl)-5-nitroimidazole ( 5 ). N-Methylation of compound 3 yielded 1-methyl-2-(2-methyl-4-thiazolyl)-3,5-dinitroimidazole ( 7 ) in high yield.  相似文献   

14.
The reaction of 2-[(N-acyl, N-alkyl or phenyl)amino]-4H-pyrido[1,2-a]pyrimidin-4-ones 8a-g with the N,N-dimethylformamide/phosphorus oxychloride Vilsmeier reagent 1 (95°, 90 minutes) afforded 1-alkyl or phenyl-2H-dipyrido[1,2-a:2′,3′-d]pyrimidine-2,5(1H)?diones, 3-alkyl substituted or not, 10a-g . The starting compounds 8 were prepared by treating 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones N-alkyl substituted 7a,b or N-phenyl substituted 4 with excess anhydrides (130°, 7 hours) when the 2-(alkylamino) derivatives 7 were used in the reaction, compounds 8 were obtained along with very small amounts of 3-acyl-2-(alkylamino)-4H-pyrido[1,2-a]pyrimidin-4-ones 9 .  相似文献   

15.
N-(R-carbamothioyl)cyclohexanecarboxamides (R: diethyl, di-n-propyl, di-n-butyl, diphenyl and morpholine-4) and their Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analyses, FT-IR and NMR methods. N-(diethylcarbamothioyl)cyclohexanecarboxamide, HL1, C12H22N2OS, crystallizes in the orthorhombic space group P212121, with Z = 4, and unit cell parameters, a = 6.6925(13) Å, b = 9.0457(18) Å, c = 22.728(5) Å. The conformation of the HL1 molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles O1–C6–N2–C5, C6–N2–C5–N1 and S1–C5–N2–C6 of 1.68°, ?67.47° and 115.50°, respectively. The structure of HL1 also shows a delocalization of the π electrons of the thiocarbonyl group over the C–N bonds. The ring puckering analysis shows that the cyclohexane ring has a chair conformation. The bis(N-(morpholine-4-carbonothioyl)cyclohexane carboxamido)nickel(II) complex, Ni(L5)2, C24H38N4NiO4S2, crystallizes in the monoclinic space group P21/c, with Z = 4, and unit cell parameters, a = 16.919(3) Å, b = 8.3659(17) Å, c = 19.654(4) Å, β = 107.43(3)°. Ni(L5)2 is a cis-complex with a slightly distorted square-planar coordination of the central nickel by two oxygen and two sulfur atoms.  相似文献   

16.
Two diamines, 2,5-bis (4-aminophenyl)-2,5-diazahexane and 1,4-bis (4-aminophenyl)-1,4-diazacyclohexane were chosen as components for polyimidizations because they have melting points that differ by nearly 200°C (66–67 and 229–230°C, respectively) and are relatives of p-nitro-N,N-dimethylaniline. The melting points of the model compounds (phthalic anhydride) do not differ by as much as those of the free amines [303–304 and 386°C (DSC), respectively]. Six polyimides were prepared by a two-step polycondensation of the diamines with pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, and 5,5'-[2,2,2-trifluoro-1-(trifluoromethyl) ethylidene] bis-1,3-isobenzofurandione. DSC thermograms failed to indicate any distinct transitions up to 450°C, however, the polyimide prepared from 2,5-bis (4-aminophenyl)-2,5-diazahexane and pyromellitic dianhydride shows a slight break in its DSC curve at 233°C.  相似文献   

17.
The novel syntheses of N,N-diisopropyl-4-benzoylbenzamide, N,N-diisopropyl-4-(1-hydroxy-1-phenylethyl)benzamide, and N,N-diisopropyl-4-(1-phenylethenyl)benzamide ( 1 ) are described. ω-Amidopolystyrene ( 2 ) was synthesized in quantitative yields by the reaction of poly(styryl)lithium with stoichiometric amounts of N,N-diisopropyl-4-(1-phenylethenyl)benzamide ( 1 ) in toluene/tetrahydrofuran (4 : 1 v/v) at −78°C. Deblocking of the amide protecting group by acid hydrolysis quantitatively provides the corresponding aromatic carboxyl chain-end functionalized polystyrene ( 3 ). The functionalization agent and functionalized polymers were characterized by HPLC, thin-layer chromatography, size exclusion chromatography, vapor phase osmometry, spectroscopy (1H-NMR, 13C-NMR, and FTIR), potentiometry, and elemental analysis. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1233–1241, 1998  相似文献   

18.
以芳香基三唑类杀菌剂三唑酮为先导物设计并合成了5个含N,N-二烷基二硫代氨基甲酸酯的芳香三唑类化合物, 通过元素分析、红外光谱、核磁共振氢谱和质谱对其结构进行了表征. 用X射线单晶衍射测定了[α-(4-甲氧基苯甲酰基)-2-(1,2,4-三唑-1-基)]乙基-N,N-二甲基二硫代氨基甲酸酯的晶体结构, 晶体属于三斜晶系, 空间群, 晶胞参数为: a=0.73482(15) nm, b=1.1051(2) nm, c=1.1209(2) nm, α=90.32(3)°, β=101.97(3)°, γ=105.13(3)°, V=0.8578(3) nm3, Z=2, Dc=1.357 g/cm3, F(000)=368, µ=0.324 mm-1. 生物测试结果显示这5种有机化合物都具有杀菌性和植物生长调节活性  相似文献   

19.
Phenanthrene 9,10-imine ( 1 ) was shown to undergo N-alkylation without aziridine ring cleavage by (a) metallation with sodium methylsulfinylmethide followed by addition of an alkyl halide at −20° (b) reaction of 1 , sodium hydride and the halide in dimethylformamide at 40° (c) treatment of a dichloromethane solution of 1 , the halide and triethylbenzylammonium chloride with aqueous sodium hydroxide under phase transfer conditions. The syntheses of N-isopropyl-, N-butyl-, N-pentyl-, N-allyl- and N-benzylphenanthrene 9,10-imine ( 2–6 ) are described.  相似文献   

20.
Sodium N-(4-sulfophenyl) maleimide (SPMI) and its saturated succinimide counterpart were first prepared according to established methods. Hydrolysis experiments on these monomers monitored by 1H-NMR showed that although SPMI monomer was about 15% hydrolyzed in D2O at 23°C in 24 h. Sodium N-(4-sulfophenyl) succinimide, which is similar in structure to the imide units in the copolymers, was only 1% hydrolyzed after 18 days at 23°C and 29% hydrolyzed after 18 days at 60°C. This indicated that the saturated imide rings in the copolymer might be sufficiently stable to hydrolysis for the copolymers to be useful. However, hydrolysis at high pH demonstrated that the imide rings would be rapidly saponified under alkaline conditions, destroying the structural rigidity that the intact rings might have provided in the copolymer chains. Sodium N-(4-sulfophenyl) maleimide (SPMI) was copolymerized with acrylamide in water at 30°C without cleavage of the imide ring. Water-soluble poly [acrylamide-co-sodium-N-(4-sulfophenyl) maleimide] (PAMSM) samples containing from 7.4 to 64 mol % imide were prepared. Photoacoustic FTIR and 13C-NMR spectra were used to confirm the structure of the copolymers obtained. Elemental analysis was used to determine the imide content of the copolymers, and from this composition data reactivity ratios were calculated for the two component monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号