首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
刘祥树  赵立臣  段亮  杨战营  杨文力 《中国物理 B》2017,26(12):120503-120503
We study localized waves on continuous wave background in an exponential dispersion decreasing fiber with two orthogonal polarization states. We demonstrate that asymmetric W-shaped and M-shaped soliton pulse can be generated from a weak modulation on continuous wave background. The numerical simulation results indicate that the generated asymmetric soliton pulses are robust against small noise or perturbation. In particular, the asymmetric degree of the asymmetric soliton pulse can be effectively controlled by changing the relative frequency of the two components. This character can be used to generate other nonlinear localized waves, such as dark–antidark and antidark–dark soliton pulse pair, symmetric W-shaped and M-shaped soliton pulse. Furthermore, we find that the asymmetric soliton pulse possesses an asymmetric discontinuous spectrum.  相似文献   

2.
In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.  相似文献   

3.
We study the propagation and interaction of ion-acoustic solitary waves in a simple two-dimensional plasma by using the extended Poincare Lighthill-Kuo perturbation method. We consider the interaction between two ion-acoustic solitary waves with different propagation directions in such a system, and obtain two Korteweg-de Vries equations for small but finite amplitude solitary waves along both ξ and η trajectories. The effects of the ratio of ion temperature σ the ratio of heat capacity γ and the colliding angle a on the amplitude, the width of the new nonlinear wave created by the collision between two solitary waves are studied. The effects of these parameters on both the colliding solitary waves are examined as well. It is found that all the above-mentioned parameters have significant effects on the properties of these nonlinear waves.  相似文献   

4.
With the help of the similarity transformation connected the variable-coefficient (3+1)-dimensional nonlinear Schrdinger equation with the standard nonlinear Schrdinger equation, we firstly obtain first-order and second-order rogue wave solutions. Then, we investigate the controllable behaviors of these rogue waves in the hyperbolic dispersion decreasing profile. Our results indicate that the integral relation between the accumulated time T and the real time t is the basis to realize the control and manipulation of propagation behaviors of rogue waves, such as sustainment and restraint. We can modulate the value T 0 to achieve the sustained and restrained spatiotemporal rogue waves. Moreover, the controllability for position of sustainment and restraint for spatiotemporal rogue waves can also be realized by setting different values of X 0 .  相似文献   

5.
We propose a scheme that excites rogue waves via electromagnetically induced transparency(EIT), which can also excite breathers and solitons. The system is a resonant Λ-type atomic ensemble. Under EIT conditions, the envelope equation of the probe field can be reduced to several different models, such as the saturable nonlinear Schr?dinger equation(SNLSE), and SNLSE with the trapping potential provided by a far-detuned laser field or a magnetic field. In this scheme, rogue waves can be generated by different initial pulses, such as the Gaussian wave with(or without) the uniform background. The scheme can be used to obtain rogue waves,breathers and solitons. We show the existence regions of rogue waves, breathers, and solitons as the function of the amplitude and width of the initial pulse. The novelty of our paper is that, we not only show rogue waves in the integrable system numerically, but also present the method to generate and control rogue waves in the non-integrable system.  相似文献   

6.
In this paper,we investigate a(2+1)-dimensional nonlinear equation model for Rossby waves in stratified fluids.We derive a forced Zakharov–Kuznetsov(ZK)–Burgers equation from the quasigeostrophic potential vorticity equation with dissipation and topography under the generalized beta effect,and by utilizing temporal and spatial multiple scale transform and the perturbation expansion method.Through the analysis of this model,it is found that the generalized beta effect and basic topography can induce nonlinear waves,and slowly varying topography is an external impact factor for Rossby waves.Additionally,the conservation laws for the mass and energy of solitary waves are analyzed.Eventually,the solitary wave solutions of the forced ZK–Burgers equation are obtained by the simplest equation method as well as the new modified ansatz method.Based on the solitary wave solutions obtained,we discuss the effects of dissipation and slowly varying topography on Rossby solitary waves.  相似文献   

7.
We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional model.It seems that the effects of the bounded geometry(the radius of the cylinder in this case)can be included in the damping coefficient.We notice that the amplitudes of both Korteweg–de Vries(KdV)solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell(PIC)simulation.The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically.Both are in good agreement.By using a definition,we give a condition whether a solitary wave exists in a bounded plasma.Moreover,some of potential applications in laboratory experiments are suggested.  相似文献   

8.
张正娣  毕勤胜 《中国物理快报》2008,25(12):4211-4214
By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions in Degasperis-Procesi equation and two cases are derived. The explicit expressions for the two-mode waves as well as the existence conditions are presented. It is shown that the two-mode waves may be the nonlinear combinations of many types of single-mode waves, such as periodic waves, solJtons, compactons, etc., and more complicated multiple-mode waves can be obtained if higher order or more single-mode waves are taken into consideration. It is pointed out that the two-mode wave solutions can be employed to display the typical mechanism of the interactions between different single-mode waves.  相似文献   

9.
The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.  相似文献   

10.
姜虹  杨晓霞  林麦麦  石玉仁  段文山 《中国物理 B》2011,20(1):19401-019401
This paper investigates the collision between two nonlinear waves with different propagation directions in two-dimensional dust crystals. Using the extended Poincaré--Lighthill-Kuo perturbation method, two Korteweg--de Vries equations for nonlinear waves in both the ξ and eta directions are obtained, respectively, and the analytical phase shifts and trajectories after the collision of two nonlinear waves are derived. Finally, the effects of parameters of the lattice constant a, the arbitrary constant u, the forces f(r), and the colliding angle θ on the phase shifts of both colliding nonlinear waves are examined.  相似文献   

11.
In this paper, a (3+1)-dimensional generalized Kadomtsev—Petviashvili (GKP) equation is investigated, which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves (quasi-periodic waves) for the (3+1)-dimensional GKP equation. Interestingly, the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves. The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.  相似文献   

12.
In this article, we consider a (3 + 1)-dimensional Sharma–Tasso–Olver-like (STOL) model describing dynamical propagation of nonlinear dispersive waves in inhomogeneous media. Applying Hirota's bilinear technique and a trial function, we explore nonlinear dynamical properties of basic solutions to the STOL model. We find that the fission fusion pattern occurs in the collision between the lump and kink waves, the collision between the lump and periodic waves, and the collision among the lump, kink and periodic waves, which is a novel fascinating collision pattern. We also observe that a large value of the coefficient in the periodic function produces a hybrid lump wave by fission in the collision solution. To better understand the dynamic properties of the obtained collision solutions, we plot a number of 3D and contour diagrams by choosing suitable parametric values with the aid of the computational software Maple 18.  相似文献   

13.
李少峰  杨联贵  宋健 《物理学报》2015,64(19):199201-199201
在层结流体中, 从带有地形、热外源耗散的下边界条件以及带有热外源的准地转位涡方程开始, 使用小参数展开方法和多尺度时空伸长变换推导出了具有热外源、β效应和地形效应的强迫Rossby孤立波方程, 得到孤立Rossby振幅满足的带有地形与热外源的非齐次非线性的Schrödinger方程. 通过分析Rossby孤立波振幅的变化, 指出了热外源、β效应和地形效应都是诱导Rossby孤立波产生的重要因素, 给出了切变基本流下地形、热外源和层结流体中Rossby的相互作用.  相似文献   

14.
In this study, we investigate the oblique collision of two ion-acoustic waves (IAWs) in a three-species plasma composed of electrons, positrons, and ions. We use the extended Poincare-Lighthill-Kuo (PLK) method to derive the two-sided Korteweg-de-Vries (KdV) equations and Hirota’s method for soliton solutions. The effects of the ratio (δ) of electron temperature to positron temperature and the ratio (p) of the number density of positrons to that of electrons on the phase shift are studied. It is observed that the phase shift is significantly influenced by the parameters mentioned above. It is also observed that for some time interval during oblique collision, one practically motionless composite structure is formed, i.e., when two ion-acoustic waves with the same amplitude interact obliquely, a new non-linear wave is formed during their collision, which means that ahead of the colliding ion-acoustic solitary waves, both the amplitude and width are greater that those of the colliding solitary waves. As a result, the nonlinear wave formed after collision is a new one and is delayed. The oblique collision of solitary waves in a two-dimensional geometry is more realistic in high-energy astrophysical pair plasmas such as the magnetosphere of neutron stars and black holes.  相似文献   

15.
We study the head-on collision of two highly boosted equal mass, nonrotating black holes. We determine the waveforms, radiated energies, and mode excitation in the center of mass frame for a variety of boosts. For the first time we are able to compare analytic calculations, black-hole perturbation theory, and strong field, nonlinear numerical calculations for this problem. Extrapolation of our results, which include velocities of up to 0.94c, indicate that in the ultrarelativistic regime about 14+/-3% of the energy is converted into gravitational waves. This gives rise to a luminosity of order 10_(-2)c_(5)/G, the largest known so far in a black-hole merger.  相似文献   

16.
Head-on collision between two ion acoustic solitary waves in a Thomas-Fermi plasma containing degenerate electrons and positrons is investigated using the extended Poincaré-Lighthill-Kuo (PLK) method. The results show that the phase shifts due to the collision are strongly dependent on the positron-to-electron number density ratio, the electron-to-positron Fermi temperature ratio and the ion-to-electron Fermi temperature ratio. The present study might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.  相似文献   

17.
We study both supercritical and subcritical bifurcations of internal solitary waves propagating along the interface between two deep ideal fluids. We derive a generalized nonlinear Schrödinger equation to describe solitons near the critical density ratio corresponding to transition from subcritical to supercritical bifurcation. This equation takes into account gradient terms for the four-wave interactions (the so-called Lifshitz term and a nonlocal term analogous to that first found by Dysthe for pure gravity waves), as well as the six-wave nonlinear interaction term. Within this model, we find two branches of solitons and analyze their Lyapunov stability.  相似文献   

18.
In this paper, we investigate a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlevé analysis is performed for us to study the integrability, and we find that the equation is not completely integrable. By virtue of the binary Bell polynomials, bilinear form and soliton solutions are obtained, and Bäcklund transformation in the binary-Bell-polynomial form and bilinear form are derived. Soliton collisions are graphically discussed: the solitons keep their original shapes unchanged after the collision except for the phase shifts. Variable coefficients are seen to affect the motion of solitons: when the variable coefficients are chosen as the constants, solitons keep their directions unchanged during the collision; with the variable coefficients as the functions of the temporal coordinate, the one soliton changes its direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号