首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The growth of crystalline ice films on Pt(111) and Pd(111) is investigated using temperature programed desorption of the water films and of rare gases adsorbed on the water films. The water monolayer wets both Pt(111) and Pd(111) at all temperatures investigated [e.g., 20-155 K for Pt(111)]. However, crystalline ice films grown at higher temperatures (e.g., T>135 K) do not wet the monolayer. Similar results are obtained for crystalline ice films of D2O and H2O. Amorphous water films, which initially wet the surface, crystallize and dewet, exposing the water monolayer when they are annealed at higher temperatures. Thinner films crystallize and dewet at lower temperatures than thicker films. For samples sputtered with energetic Xe atoms to prepare ice crystallites surrounded by bare Pt(111), subsequent annealing of the films causes water molecules to diffuse off the ice crystallites to reform the water monolayer. A simple model suggests that, for crystalline films grown at high temperatures, the ice crystallites are initially widely separated with typical distances between crystallites of approximately 14 nm or more. The experimental results are consistent with recent theory and experiments suggesting that the molecules in the water monolayer form a surface with no dangling OH bonds or lone pair electrons, giving rise to a hydrophobic water monolayer on both Pt(111) and Pd(111).  相似文献   

2.
The dynamics of atoms or molecules adsorbed on a metal surface, and excited by collisions with an atomic beam, are treated within a theory that includes energy dissipation into lattice vibrations by means of a frequency and temperature dependent friction function. The theory provides dynamic structure factors for energy transfer derived from collisional time correlation functions. It describes the relaxation of a vibrationally excited atom or molecule within a model of a damped quantum harmonic oscillator bilinearly coupled to a bath of lattice oscillators. The collisional time correlation function is generalized to include friction effects and is applied to the vibrational relaxation of the frustrated translation mode of Na adsorbed on a Cu(001) surface, CO on Cu(001), and CO on Pt(111), following excitation by collisions with He atoms. Results for the frequency shift and width of line shapes versus surface temperature are in very good agreement with experimental measurements of inelastic He atom scattering. Our interpretation of the experimental results provides insight on the relative role of phonon versus electron-hole relaxation.  相似文献   

3.
We used the B3LYP flavor of density functional theory (DFT) to study the chemisorption of all CH(x) and C(2)H(y) intermediates on the Pt(111) surface. The surface was modeled with the 35 atom Pt(14.13.8) cluster, which was found to be reliable for describing all adsorption sites. We find that these hydrocarbons all bind covalently (sigma-bonds) to the surface, in agreement with the studies by Kua and Goddard on small Pt clusters. In nearly every case the structure of the adsorbed hydrocarbon achieves a saturated configuration in which each C is almost tetrahedral with the missing H atoms replaced by covalent bonds to the surface Pt atoms. Thus, (Pt(3))CH prefers a mu(3) hollow site (fcc), (Pt(2))CH(2) prefers a mu(2) bridge site, and PtCH(3) prefers mu(1) on-top sites. Vinyl leads to (Pt(2))CH-CH(2)(Pt), which prefers a mu(3) hollow site (fcc). The only exceptions to this model are ethynyl (CCH), which binds as (Pt(2))C=CH(Pt), retaining a CC pi-bond while binding at a mu(3) hollow site (fcc), and HCCH, which binds as (Pt)HC=CH(Pt), retaining a pi bond that coordinates to a third atom of a mu(3) hollow site (fcc) to form an off center structure. These structures are in good agreement with available experimental data. For all species we calculated heats of formation (DeltaH(f)) to be used for considering various reaction pathways on Pt(111). For conditions of low coverage, the most strongly bound CH(x) species is methylidyne (CH, BE = 146.61 kcal/mol), and ethylidyne (CCH(3), BE = 134.83 kcal/mol) among the C(2)H(y) molecules. We find that the net bond energy is nearly proportional to the number of C-Pt bonds (48.80 kcal/mol per bond) with the average bond energy decreasing slightly with the number of C ligands.  相似文献   

4.
The spectroscopic investigation of the molecular vibrations of adsorbed branched and unbranched alkane molecules using helium atom scattering (HAS) provides evidence for the thermal formation of gauche defects in tetracosane (C24H50) monolayers above 200 K. HAS results for the vibration of tetracosane molecules perpendicular to the Pt(111) surface reveal a strong frequency decrease and peak broadening above the transition temperature which can be related to a reduction of the force holding the molecules to the surface. This reduction of the force is interpreted as being due to the thermal formation of gauche defects within the tetracosane molecules.  相似文献   

5.
The diffusion of single n-butane and n-decane molecules on a model stepped surface, Pt655, and on a corresponding flat surface, Pt111, is investigated using molecular-dynamics simulations and anisotropic united atom model. The surface step on Pt655 causes the alkane molecules to adsorb on the lower terrace in all-trans conformations with their long molecular axes adjacent and parallel to the step edge, and to diffuse anisotropically along the surface step via a constant wiggly motion without rotation or marked deviation from the parallel adsorption configuration. At relatively high temperatures, the alkane molecules can temporarily break away from the step edge but cannot migrate across the step edge in either the downstair or upstair direction. In comparison with the diffusion on Pt111, the diffusivity of n-decane is reduced by the surface step but its diffusion barrier is hardly affected. In the case of the shorter n-butane, however, the surface step significantly reduces the diffusion energy barrier and gives rise to higher diffusion coefficients at lower temperatures. Important implications of the simulation results are discussed.  相似文献   

6.
用266nm激光光解CHBr_3分子产生CH(A,B)态自由基,通过测量CH(A,B→X)自发辐射的时间分辨信号测定室温下(CH_3)_2NH、(C_2H_5)_2NH、(C_2H_5)_3N、n-C_5H_(12)、n-C_6H_(14)和n-C_7H_(16)对CH(A,B,v'=0)的猝灭速率常数.发现猝灭速率常数与猝灭剂烷烃分子中的C-H键数近似成线性关系,但对大的烷烃分子,这种增加逐渐趋缓.用碰撞络合物模型计算胺类分子及烷烃分子与CH形成碰撞络合物时的生成截面,结果表明,在电子激发态CH自由基的猝灭过程中,碰撞对子间的多极相互吸引势和色散力作用势可能起重要作用.  相似文献   

7.
Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption have been used to study the coupling of C and N atoms on Pt(111) to form surface CN. This reaction underlies the important synthesis of HCN from methane and ammonia over platinum catalysts. Since CH4 and NH3 do not thermally dissociate on Pt(111) under ultrahigh vacuum conditions, we used CH3I and electron bombardment of NH3 to generate reactive surface species. Surface CN is formed at a temperature of 500 K from surface Nads and Cads atoms. The presence of surface CN is detected by HCN desorption and through the reaction of hydrogen with CNads to form a surface >CNH2 (aminocarbyne) species, which has a characteristic RAIR spectrum.  相似文献   

8.
The microscopic structure of the Pt(3)Sn(111) surface in an electrochemical environment has been studied by a combination of ex situ low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and low-energy ion scattering (LEIS) and in situ surface X-ray scattering (SXS) and Fourier transform infrared (FTIR) spectroscopy. In ultrahigh vacuum (UHV) the clean-annealed surface produces a p(2 x 2) LEED pattern consistent with the surface composition, determined by LEIS, of 25 at. % Sn. SXS results show that the p(2 x 2) structure can be "transferred" from UHV into 0.5 M H(2)SO(4) and that the surface structure remains stable from 0.05 to 0.8 V. At 0.05 V the expansion of Pt surface atoms, ca. +2% from the bulk lattice spacing, is induced by adsorption of underpotential-deposited (UPD) hydrogen. At 0.5 V, where Pt atoms are covered by (bi)sulfate anions, the topmost layer is contracted relative to 0.05 V, although Sn atoms expand significantly, ca. 8.5%. The p(2 x 2) structure is stable even in solutions containing CO. In contrast to the Pt(111)-CO system, no ordered structures of CO are formed on the Pt(3)Sn(111) surface and the topmost layer expands relatively little (ca. 1.5%) from the bulk lattice spacing upon the adsorption of CO. The binding site geometry of CO on Pt(3)Sn(111) is determined by FTIR. In contrast to the near invariant band shape of a-top CO on Pt(111), changes in band morphology (splitting of the band) and vibrational properties (increase in the frequency mode) are clearly visible on the Pt(3)Sn(111) surface. To explain the line shape of the CO bands, we suggest that in addition to alloying effects other factors, such as intermolecular repulsion between coadsorbed CO and OH species, are controlling segregation of CO into cluster domains where the local CO coverage is different from the coverage expected for the CO-CO interaction on an unmodified Pt(111) surface.  相似文献   

9.
The effect of co-adsorption of CO on an underpotentially deposited (UPD) silver monolayer on a Pt(111) single crystal electrode in 0.05 M sulfuric acid is investigated for the first time by means of electrochemical scanning tunneling microscopy (EC-STM). Pure electrochemical experiments suggest that the co-adsorption of CO onto Pt single crystal electrodes previously modified by a monolayer of Ag, forces Ag atoms of the first UPD monolayer into a second adlayer. The present EC-STM studies reveal the formation of a large-area Ag network after the co-adsorption of CO. The resulting Ag nanostructures formed on wide Pt(111) terraces are approximately 0.5 nm high and 10 nm wide. The desorption of the newly formed second Ag adlayer, the oxidation of CO and the desorption of Ag atoms from the first adlayer are monitored by EC-STM and simultaneously detected in the corresponding CVs in three different oxidation peaks. EC-STM images recorded afterwards show the unchanged Pt surface. The presence of Ag on the surface leads to a downward shift of the onset of oxygen adsorption on the Pt(111) surface.  相似文献   

10.
The MP2/6-311++G(2df,2pd) level of theory was used to calculate intermolecular potential curves between CF(4), as a model for the C and F atoms of a fluorinated alkane surface, and CH(4), NH(3), NH(4)(+), H(2)CO, and H(2)O as models for different types of atoms and functional groups comprising protonated peptide ions. This level of theory was tested by comparisons with the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ theories. Explicit-atom (EA) analytic potential energy functions were then derived by fitting these potential energy curves with two-body potentials between the atoms of the two interacting molecules. An intermolecular potential for the interaction of a protonated peptide ion with a fluorinated alkane surface may be constructed from these two-body potentials. Intermolecular potentials, for which CF(4) is treated as a united atom (UA), were developed by isotropically averaging the CF(4) orientation for each of the EA potential energy curves. The intermolecular potential energy curves calculated for CF(4) are compared with curves calculated previously for CH(4) interacting with the same molecules, to consider the relative efficiency of energy transfer for protonated peptide ion collisions with hydrogenated and fluorinated alkane surfaces.  相似文献   

11.
The effects of lattice motion and relaxation on the dissociative adsorption of methane on a Ni(111) surface are explored. Electronic structure methods based on the density functional theory are used to compute the potential energy surface for this reaction. It is found that, in the transition state and product regions, there are forces causing the Ni atom over which the molecule dissociates to move out of the surface. In order to examine the extent to which the lattice might pucker during this reaction, high dimensional fully quantum scattering calculations are carried out. It is found that a significant amount of lattice puckering can occur, even at large collision energies, lowering the barrier to reaction and increasing the dissociative sticking probability. This is shown to be in contrast to the predictions of the surface oscillator model. While we observe similar puckering forces for this reaction on Pt(111), our calculations suggest that the puckering on this surface will be considerably less due to the larger metal atom mass. The "laser off" reactivities of CD(3)H on Ni(111) are computed, and it is demonstrated that there can be significant contributions to the reactivity from vibrationally excited molecules, particularly at lower collision energies, or when a large nozzle temperature is required to attain the necessary collision energy for reaction. Comparisons are made with recent experiments with regard to the variation of reactivity with collision energy, vibrational state, and surface temperature.  相似文献   

12.
In this work, we present the behavior of solid monolayers of binary mixtures of alkanes and alcohols adsorbed on the surface of graphite from their liquid mixtures. We demonstrate that solid monolayers form for all the combinations investigated here. Differential scanning calorimetry (DSC) is used to identify the surface phase behavior of these mixtures, and elastic neutron incoherent scattering has been used to determine the composition of the mixed monolayers inferred by the calorimetry. The mixing behavior of the alcohol/alkane monolayer mixtures is compared quantitatively with alkane/alkane and alcohol/alcohol mixtures using a regular solution approach to model the incomplete mixing in the solid monolayer with preferential adsorption determining the surface composition. This analysis indicates the preferential adsorption of alcohols over alkanes of comparable alkyl chain length and even preferential adsorption of shorter alcohols over longer alkanes, which contrasts strongly with mixtures of alkane/alkane and alcohol/alcohol of different alkyl chain lengths where the longer homologue is always found to preferentially adsorb over the shorter. The alcohol/alkane mixtures are all found to phase separate to a significant extent in the adsorbed layer mixtures even when molecules are of a similar size. Again, this contrasts strongly with alkane/alkane and alcohol/alcohol mixtures where, although phase separation is found for molecules of significantly different size, good mixing is found for similar size species.  相似文献   

13.
The mechanism of CN bond formation from CH3 and NH3 fragments adsorbed on Pt(111) was investigated with reflection absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The surface chemistry of carbon-nitrogen coupling is of fundamental importance to catalytic processes such as the industrial-scale synthesis of HCN from CH4 and NH3 over Pt. Since neither CH4 nor NH3 thermally dissociate on Pt(111) under ultrahigh vacuum (UHV) conditions, the relevant surface intermediates were generated through the thermal decomposition of CH3I and the electron-induced dissociation of NH3. The presence of surface CN is detected with TPD through HCN desorption as well as with RAIRS through the appearance of the vibrational features characteristic of the aminocarbyne (CNH2) species, which is formed upon hydrogenation of surface CN at 300 K. The RAIRS results show that HCN desorption at approximately 500 K is kinetically limited by the formation of the CN bond at this temperature. High coverages of Cads suppress CN formation, but the results are not influenced by the coadsorbed I atoms. Cyanide formation is also observed from the reaction of adsorbed N atoms and carbon produced from the dissociation of ethylene.  相似文献   

14.
A dramatic multilayer substrate relaxation is observed for the (square root 19 x square root 19)-13CO adlayer phase on a Pt(111) electrode by surface X-ray scattering. Within the (square root 19 x square root 19) unit cell, a vertical expansion of 0.28 A was determined for the Pt atoms under near-top-site CO molecules, whereas only 0.04 A was found under near-bridge-site CO molecules. The lateral displacements involve small rotations toward more symmetric bonding. Both the expansions and rotations extend into the bulk with a decay length of 1.8 Pt layers. This nonuniform layer expansion, hitherto unseen, appears to be a manifestation of the differential stress induced by CO adsorption at different sites.  相似文献   

15.
A long-term cyclic voltammetry study of Pt(111) electrode in dilute solutions of mercury sulfate (5 × 10–8–5 × 10–7 M Hg2SO4 + 0.5 M H2SO4) has shown that a slow transformation of Pt(111) surface takes place. This transformation leads to a decrease in the bi-dimensional long-range order of the surface. The interpretation of the process involves the increase in mobility of Pt atoms and surface alloying in the presence of mercury. Similar processes of Pt(111) surface disordering take place in acid solution of copper sulfate with the addition of Hg2SO4. The penetration of Hg atoms beneath the Pt(111) topmost layer proceeds when only a fraction of the mercury monolayer is deposited on the electrode surface.  相似文献   

16.
We demonstrate the mode-selective excitation of coherent phonons at Pt(111) surfaces covered with submonolayer caesium atoms. A burst of 150 fs laser pulses with the repetition rate of 2.0-2.9 THz was synthesized by using a spatial-light modulator, and used for the coherent surface phonon excitation. The coherent nuclear motion was monitored by time-resolved second harmonic generation. By tuning the repetition rate, we succeeded in controlling the relative amplitude of the vibrational coherence of the Cs-Pt stretching mode (2.3-2.4 THz) to that of the Pt surface Rayleigh phonon mode (2.6 or 2.9 THz, depending on the Cs coverage).  相似文献   

17.
The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H(2)/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determined. The case of the H(2)/NaCl(001) monolayer for 26 meV scattering energy is computationally challenging and difficult because it has a much more corrugated surface than those in the previous applications for triangular lattices. This requires a large number of coupled channels for convergence in the wave-packet-scattering calculation and a long series of Fourier amplitudes to represent the helium-target potential energy surface. A modified series is constructed in which a truncated Fourier expansion of the potential is constrained to give the exact value of the potential at some key points and which mimics the potential with fewer Fourier amplitudes. The shear horizontal phonon mode is again accessed by the helium scattering for small misalignment of the scattering plane relative to symmetry axes of the monolayer. For 1° misalignment, the calculated intensity of the longitudinal acoustic phonon mode frequently is higher than that of the shear horizontal phonon mode in contrast to what was found at scattering energies near 10 meV for triangular lattices of Ar, Kr, and Xe on Pt(111).  相似文献   

18.
The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. Here we study the thermodynamic stability of platinum oxide surfaces and thin films and their reactivities toward oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of alpha-PtO2, which appears not to be reactive toward either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favored at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than that on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.  相似文献   

19.
Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to identify the molecular species formed upon the reaction of hydrogen with surface carbon that is deposited by exposing acetylene to a Pt(111) surface held at 750 K. At this temperature, the acetylene is completely dehydrogenated and all hydrogen is desorbed from the surface. Upon subsequent hydrogen exposure at 85 K followed by sequential annealing to higher temperatures, ethylidyne (CCH3), ethynyl (CCH), and methylidyne (CH) are formed. The observation of these species indicates that carbon atoms and C2 molecules exist as stable species on the surface over a wide range of temperatures. Through a combination of RAIRS intensities, hydrogen TPD peak areas, and Auger electron spectroscopy, quantitative estimates of the coverages of the various species were obtained. It was found that 79% of the acetylene-derived carbon was in the form of C2 molecules, with the remainder in the form of carbon atoms. Essentially all of the acetylene-derived carbon could be hydrogenated. In contrast, 85% of an equivalent coverage of carbon deposited by ethylene exposure at 750 K was found to be inert toward hydrogenation.  相似文献   

20.
The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C-C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO-SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号