首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrocatalytic oxidation of small organic molecules has attracted considerable at-tentionin system of fuel celll-4. In this research field, Parsons4 pointed out that the electrodeswhich were prepared from non-noble substrates modified by excellent dispersal noblemetal particles and which still exhibited better catalytic activity should be studied. Ionimplantation is a technique with unique advantage and has been used in manyelectrochemical research fieldss'6. The present study is an at-tempt…  相似文献   

2.
燃料电池中氢电极催化剂的研究   总被引:4,自引:0,他引:4  
顾军  隋升 《燃料化学学报》1999,27(3):282-285
燃料电池是借助于电池内的燃烧反应,将化学能直接转为电能的装置,是一种新型的高效化学电源,是除火力、水力、核能之外的第四种发电方式。对燃料电池,性能良好的催化剂至关重要,它决定着大电流密度放电时的电池性能、运行寿命和成本。燃料电池的催化剂应该满足以下条...  相似文献   

3.
Thermogravimetry, Differential Scanning Calorimetry and other analytical techniques (Energy Dispersive X-ray Analysis; Scanning Electron Microscopy; Mapping Surface; X-ray Diffraction; Inductively Coupled Plasma Atomic Emission Spectroscopy and Cold Vapor Generation Atomic Absorption Spectroscopy) have been used to study the reaction of mercury with platinum foils. The results suggest that, when heated, the electrodeposited Hg film reacts with Pt to form intermetallic compounds each having a different stability, indicated by at least three mass loss steps. Intermetallic compounds such as PtHg4, PtHg and PtHg2 were characterized by XRD. These intermetallic compounds were the main products formed on the surface of the samples after partial removal of bulk mercury via thermal desorption. The Pt(Hg) solid solution formation caused great surface instability, attributed to the atomic size factor between Hg and Pt, facilitating the acid solution’s attack to the surface.  相似文献   

4.
Using the first-principles cluster expansion (CE) method, we studied the subsurface ordering of Pt/Pt-Ti(111) surface alloys and the effect of this ordering on segregation and adsorption behavior. The clusters included in the CE are optimized by a genetic algorithm to better describe the interactions between Pt and Ti atoms in the subsurface layer. Similar to bulk Pt-Ti alloys, Pt-Ti(111) subsurface alloys show a strong ordering tendency. A series of stable ordered Pt-Ti subsurface structures are identified from the two-dimensional (2D) CE. As an indication of the connection between the 2D and the bulk ordering, the CE predicts a ground-state Pt(8)Ti structure in the (111) subsurface layer, which is the same ordering as the close-packed plane of the bulk Pt(8)Ti compound. We carried out Monte Carlo simulations (MC) using the CE Hamiltonian to study the finite temperature stability of the Pt-Ti subsurface structures. The MC results show that subsurface structures in the Pt-rich range have higher order-disorder transition temperatures than their Ti-rich subsurface counterparts. We calculate the binding energy of different adsorbates (O, S, H, and NO) on Pt-terminated and Ti-segregated surfaces of ordered PtTi and Pt(8)Ti subsurface alloys. The binding of these adsorbates is generally stronger on Ti-segregated surfaces than Pt-terminated surfaces. The adsorption-induced Ti surface segregation is determined by two factors: (i) the unfavorable energy penalty for the Ti atom to segregate to the clean surface and (ii) the favorable energy decrease from stronger adsorbate binding on the Ti-segregated surface. The two factors introduce similar magnitude in energy change for the S and NO adsorption on Ti-segregated surfaces of PtTi subsurface alloys. We predict an adsorption-induced Ti surface segregation that is dependent on the atomic configurations of the Ti-segregated surfaces resulting from the competition of the two factors.  相似文献   

5.
Summary Measurements of the surface composition of Au-Pd binary alloys performed by Ion Scattering Spectroscopy (ISS) and X-ray Photoelectron-Spectroscopy (XPS) are presented. A set of 11 alloys with different bulk composition was used for these studies. Argon bombardment induced alternation of the surface composition due to preferential sputtering effects and surface segregation due to temperature excursions up to 500 °C have been studied. For quantitative evaluation of the ISS spectra pure metal standards and also calculated scattering cross sections were used. In general, little gold enrichment due to preferential sputtering and strong surface segregation of gold at elevated temperature was found by ISS measurements. The thickness of the altered layer is about 1 or 2 monolayers.  相似文献   

6.
碳纳米管(CNTs)是近年来发现的一种新型催化剂载体材料,将其作为α,β-不饱和醛的选择加氢的研究则报道较少.本文对柠檬醛[Citral,3,7-二甲基-2,6-辛二烯醛(3,7-Dimethyl-2,6-octadienal)]在Pt/CNTs和Pt/XC-72催化剂作用下的液相选择加氢进行了探索性研究.结果发现,碳纳米管(CNTs)负载的Pt催化剂具有生成不饱和醇的高选择性.  相似文献   

7.
Nanostructured Pt–M (M=Fe, Co, Ni, and Cu) alloy catalysts synthesized by a low temperature (70 °C) reduction procedure with sodium formate in aqueous medium have been investigated for oxygen reduction in sulfuric acid and as cathodes in single proton exchange membrane fuel cells (PEMFC). The Pt–M alloy catalysts show improved catalytic activity towards oxygen reduction compared to pure platinum. Among the various alloy catalysts investigated, the Pt–Co catalyst shows the best performance with the maximum catalytic activity and minimum polarization occurring at a Pt:Co atomic ratio of around 1:7. While mild heat treatments at moderate temperatures (200 °C) improve the catalytic activity due to a cleaning of the surface oxides, annealing at elevated temperatures (900 °C) degrade the activity due to an increase in particle size.  相似文献   

8.
We have investigated the segregation of Pt atoms in the surfaces of Pt-Ni nanoparticles, using modified embedded atom method potentials and the Monte Carlo method. The nanoparticles are constructed with disordered fcc configurations at two fixed overall concentrations (50 at. % Pt and 75 at. % Pt). We use octahedral and cubo-octahedral nanoparticles terminated by {111} and {100} facets to examine the extent of the Pt segregation to the nanoparticle surfaces at T=600 K. The model particles contain between 586 and 4033 atoms (particle size ranging from 2.5 to 5 nm). Our results imply that a complete {100}-facet reconstruction could make the cubo-octahendral Pt-Ni nanoparticles most energetically favorable. We predict that at 600 K due to segregation the equilibrium cubo-octahedral Pt50Ni50 nanoparticles with fewer than 1289 atoms and Pt75Ni25 nanoparticles with fewer than 4033 atoms would achieve a surface-sandwich structure, in which the Pt atoms are enriched in the outermost and third atomic shells while the Ni atoms are enriched in the second atomic shell. We also find that, due to an order-disorder transition, the Pt50Ni50 cubo-octahedral nanoparticles containing more than 2406 atoms would form a core-shell structure with a Pt-enriched surface and a Pt-deficient homogenous core.  相似文献   

9.
次亚磷酸根离子在多晶铂电极上氧化的原位红外光谱研究;电氧化;电催化;SNIFTIRS  相似文献   

10.
Irreversibly adsorbed tellurium has been studied as a probe to quantify ordered domains in platinum electrodes. The surface redox process of adsorbed tellurium on the Pt(111) electrode and Pt(111) stepped surfaces takes place around 0.85 V in a well-defined peak. The behavior of this redox process on the Pt(111) vicinal surfaces indicates that the tellurium atoms involved in the redox process are only those deposited on the (111) terrace sites. Moreover, the corresponding charge density is proportional to the number of sites on (111) ordered domains (terraces) that are, at least, three atoms wide. Hence, this charge density can be used to measure the number of (111) terrace sites on any given platinum sample. Structural information about tellurium adsorption is obtained from atomic-resolution STM images for the Pt(111) and Pt(10, 10, 9) electrodes. A rectangular structure (2 x radical 3) and a compact hexagonal structure (11 x 8) were identified. However, the redox peak for adsorbed tellurium on (100) domains at 1.03 V overlaps with peaks arising from steps and (110) sites. Therefore, it cannot be used without problems for the determination of (100) sites on a platinum sample. On the (100) terraces, the surface structure of the adsorbed tellurium is c(2 x 2), as revealed by STM. Finally, tellurium irreversible adsorption has been used to estimate the number of (111) ordered domains terrace sites on different polycrystalline platinum samples, and the results are compared to those obtained with bismuth irreversible adsorption.  相似文献   

11.
Platinized nickel and cobalt coatings, Pt(Ni) and Pt(Co), have been prepared on glassy carbon, GC, rotating disc electrode substrates by a two-step room temperature procedure that involved the electrodeposition of nickel and cobalt layers and their spontaneous partial replacement by platinum (“transmetalation”) when immersed into a chloroplatinic acid solution. By tuning the quantity of initially deposited nickel and cobalt, Pt(Ni) and Pt(Co) bimetallic coatings having a 26% atom Ni and 30% atom Co composition have been prepared. For both materials typical Pt surface electrochemistry was recorded during fast voltammetry in deaerated acid, pointing to the existence of a continuous Pt skin over a Pt–Ni and Pt–Co core. Oxygen reduction at the Pt(Ni)/GC and Pt(Co)/GC electrodes was studied by means of steady-state voltammetry at a rotating disc electrode and the construction of Tafel plots from corresponding voltammetric data. It was found that, when the initial potential of the voltammetric sweep allowed the formation of a complete Pt oxide monolayer, then oxygen reduction was hindered for low overpotentials at Pt(Ni) and Pt(Co), compared to pure bulk Pt. On the other hand, when the initial potential was less positive (thus leading to the formation of a fraction of surface oxide monolayer) the presence of Ni and Co enhanced the kinetics of oxygen reduction. The former behaviour is attributed to a decrease in oxide reduction ability of Pt in the presence of Ni and Co, while the latter to an increase in dissociative oxygen chemisorption due to Ni and Co.  相似文献   

12.
Summary Disappearance Potential Spectroscopy study of the oxygen adsorption on the Pt(100)-(1×1) single crystal surface revealed a regular set of spectral satellites designated as the platinum bulk plasmons.  相似文献   

13.
Nanostructured platinum catalysts for electrochemical systems with proton-exchange membranes (PEMs) have been synthesized by magnetron ion sputtering on a carbon support. The design of the powder support stirrer has been optimized to ensure uniform surface coverage with platinum metal nanoparticles. The deposition parameters (discharge power, deposition time, and bias voltage) that make it possible to obtain electrocatalysts with a large specific surface area (up to 44 m2/g) have been determined. The resulting catalysts have been studied by transmission electron microscopy and X-ray diffraction. The samples with platinum particles 3 to 4 nm in size uniformly distributed over the carbon surface and forming a single phase exhibit the greatest efficiency. The electrodes based on the synthesized electrocatalysts have been tested in a liquid electrolyte and as a component of a fuel cell and PEM water electrolyzer. The voltage across the fuel cell with the synthesized Pt/C electrocatalyst (44 m2/g) at a current density of 1 A/cm2 is as high as 0.55 V, which corresponds to a specific power of 550 mW/cm2. Qualitative correlations between the parameters of the synthesized catalysts and the deposition conditions have been established.  相似文献   

14.
Vibrational properties of surface species formed upon H2 and D2 exposure of silica supported platinum particles have been investigated with in situ diffuse reflection infrared Fourier transform spectroscopy. Experiments have been performed at 50-250 degrees C, using different platinum loading of the samples in the absence and presence of oxygen. In addition, electronic structure calculations and vibrational analysis have been performed within the density functional theory for H adsorption on a silica cluster, (HO)3SiOSi(OH)3. The spectroscopy experiments showed reversible formation of isolated OH and OD groups on the silica surface when the samples were exposed to H2 and D2, respectively. In addition to the absorption peak corresponding to isolated OH and OD groups, an intense broad band was observed around 3270 cm(-1) (2500 cm(-1)) during H2 (D2) exposure. Supported by the calculations, this band was assigned to perturbed OH groups on the silica surface. The surface coverage of new OH groups was found to correlate to the platinum loading in the samples, indicating that the new silanol groups were formed in the vicinity of the Pt particles. In the investigated temperature interval, the formation rate of OH groups was not found to be temperature dependent.  相似文献   

15.
Ni/Pt(111) bimetallic surfaces: unique chemistry at monolayer ni coverage.   总被引:1,自引:0,他引:1  
We have utilized the dehydrogenation and hydrogenation of cyclohexene as probe reactions to compare the chemical reactivity of Ni overlayers that are grown epitaxially on a Pt(111) surface. The reaction pathways of cyclohexene were investigated using temperature-programmed desorption, high-resolution electron energy loss (HREELS), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our results provide conclusive spectroscopic evidence that the adsorption and subsequent reactions of cyclohexene are unique on the monolayer Ni surface as compared to those on the clean Pt(111) surface or the thick Ni(111) film. HREELS and NEXAFS studies show that cyclohexene is weakly pi-bonded on monolayer Ni/Pt(111) but di-sigma-bonded to Pt(111) and Ni(111). In addition, a new hydrogenation pathway is detected on the monolayer Ni surface at temperatures as low as 245 K. By exposing the monolayer Ni/Pt(111) surface to D2 prior to the adsorption of cyclohexene, the total yield of the normal and deuterated cyclohexanes increases by approximately 5-fold. Furthermore, the reaction pathway for the complete decomposition of cyclohexene to atomic carbon and hydrogen, which has a selectivity of 69% on the thick Ni(111) film, is nearly negligible (<2%) on the monolayer Ni surface. Overall, the unique chemistry of the monolayer Ni/Pt(111) surface can be explained by the weaker interaction between adsorbates and the monolayer Ni film. These results also point out the possibility of manipulating the chemical properties of metals by controlling the overlayer thickness.  相似文献   

16.
Summary The present technological development in the field of opto-electronics requires a sufficiently high stability of the applied metal-semiconductor contacts because of the thermal and electrical cross-section loading. Au/Pt/Ti layer contacts to GaAs(100) and InP(100) substrates annealed under various conditions were investigated by means of Auger Electron Spectroscopy (AES) in conjunction with ion sputtering. The diffusion and reaction behavior are discussed based on intensity-depth profiles and chemical shifts. As the main result we found that the GaAs contact is more stable. It reacts strongly at a temperature of about 450°C. On the other hand Au/Pt/Ti/InP contact reacts already above 300°C. The principal reason for the difference in the behavior of InP and GaAs contacts is the In segregation.  相似文献   

17.
A novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid. The proposed model is validated by heating liquid argon between two Pt walls and comparing the thermal conductivity and change in internal energy to thermodynamic properties of argon. Later on, phase change process is studied by simulating evaporation of a thin liquid argon film on a Pt wall using the proposed model. Gradual evaporation of the liquid film occurs although the film does not vaporize completely. An ultra-thin layer of liquid argon is noticed to have "adsorbed" on the platinum surface. An analysis similar to the theoretical study by Hamaker (1937) is performed for the non-evaporating film and the value of the Hamaker-type constant falls in the typical range. This analysis is done to quantify the non-evaporating film with an attempt to use molecular dynamics simulation results in continuum mechanics.  相似文献   

18.
The hydrogen adsorption on polycrystalline platinum electrode experimentally as well as on single crystal Pt(110), Pt(100) and Pt(111) electrode theoretically were studied. The study of forced convection on the electrode surface promotes the HUPD research from static process to a convective mode and provides a new strategy to investigate the hydrogen adsorption in solution.  相似文献   

19.
甲烷部分氧化制合成气Pt-Ni/Al~2O~3催化剂的研究   总被引:7,自引:0,他引:7  
严前古  高利珍  储伟  于作龙  远松月 《化学学报》1998,56(10):1021-1026
研究了Ni/Al~2O~3,Pt/Al~2O~3和一系列Pt-Ni/Al~2O~3催化剂对甲烷部分氧化制合成气的催化作用,发现Pt-Ni/Al~2O~3催化剂显示了比Ni/Al~2O~3和Pt/Al~2O~3更高的活性和稳定性。H~2-TPR,CO-TPD,CO~2-TPD,SEM,XPS和XRD等结果证明:Pt和Ni之间存在较强的相互作用,Pt和部分Ni形成固溶体合金并且Pt在催化剂表面富集。Pt和Ni之间的相互作用提高了催化剂的活性和稳定性,甲烷在Pt-Ni/Al~2O~3上的催化部分氧化具有不同于在Pt/Al~2O~3和Ni/Al~2O~3上的反应性能。  相似文献   

20.
High performance gold-supported Pt electrocatalyst for the reduction of oxygen was prepared by replacing Cu adlayers, deposited potentiostatically on Au, with Pt at open-circuit potential in a 0.1 M HCl solution containing K2PtCl6. Auger Electron Spectroscopy and Atomic Force Microscopy reveal the surface modification. The kinetics of oxygen reduction on this platinum modified electrode was studied by the rotating-disc electrode technique. The activity of the electrode is lower than the activity of a smooth Pt electrode in the negative potential scan, but it is significantly higher in the positive scan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号