首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Two-dimensional Si photonic crystals on oxide using SOI substrate   总被引:1,自引:0,他引:1  
Two-dimensional photonic crystals (2D-PhCs) on oxide can be easily incorporated into photonic integrated circuits. Although an asymmetrical structure (air/PhC/oxide) is advantageous in terms of ease of fabrication, it has been pointed out that such a structure may have no photonic band gap (PBG). To clarify the characteristics of the asymmetrical structure, we calculated the band structure using the three-dimensional (3D) FDTD method and measured the transmission characteristics of a fabricated 2D Si-PhC on oxide. The calculations show that we can use a quasi-PBG even in an asymmetrical structure when the PhC thickness satisfies the single-mode condition. The measured transmission characteristics correspond to the calculated band structure and reveal the existence of a quasi-PBG. These results show that the asymmetrical 2D Si-PhC-on-oxide structure can be applied to various optical devices.  相似文献   

2.
A composite 1D photonic structure with defect was designed, fabricated by wet anisotropic etching of (110)‐oriented silicon and filled with liquid crystal. The polarized reflection spectra of the second‐order stop band with defect mode have been registered by means of FTIR microscopy. The thermo‐optical effect in the photonic structure due to phase transition in liquid crystal has been demonstrated in the spectral region of 8.5 µm. The relative shift of the defect mode peak was found experimentally to be 2.0% compared to 3.1% as predicted by calculation. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The finite difference waveguide mode solution method, which has been popularly employed in the study of waveguide modes on various optical and dielectric waveguides, is utilized to calculate the modal characteristics of photonic crystal fibers (PCFs) and planar photonic crystal waveguides and the band diagrams of two-dimensional photonic crystals. Vector guided modes on both PCFs based on the total internal reflection guiding mechanism ('holey fibers') and those resulting from photonic band gap effect are accurately computed, with their effective indexes and field distributions compared with other methods. Calculated dispersion of a single-core holey fiber and coupled-power behavior of a two-core holey fiber are found to agree with measured results. For applications to band diagram calculation and planar photonic crystal waveguide analysis, the finite difference scheme is modified simply by imposing suitable periodic boundary condition. Numerical results for air-column crystals and dielectric-rod crystals are both found to agree well with calculations using other methods.  相似文献   

4.
Photonic crystal based superprism offers a way to design new optical components for beam steering and DWDM (Dense Wavelength Division Multiplexing) application. Three-dimensional (3D) photonic crystals are especially attractive as they could offer more control of the light beam. A FCT (Face-Centered-Tetragonal) woodpile structure has been fabricated using layer by layer stacking techniques with E-Beam lithography. Special planarizations and processes have been introduced to ensure the survivability and good alignment of the fabricated nanostructures. Scanning electron microscopy results proved the structure uniformity. With the proper design, the structure exhibits superprism effects around 1550 nm, and such effects have been observed in the experiments.  相似文献   

5.
Planar defects in three-dimensional chalcogenide glass photonic crystals   总被引:1,自引:0,他引:1  
Here we report on the direct laser writing fabrication of Fabry-Perot-type planar microcavities in a three-dimensional (3D) photonic crystal (PhC) embedded within a high-refractive nonlinear chalcogenide glass (ChG) film. The fabricated planar microcavities in a nonlinear ChG 3D PhC facilitate the observation of resonant modes inside the stop gap. The experimental results show that the length of the planar cavity can be well controlled by the fabrication power and thus be used to tune the defect modes. The tunability of the observed defect modes is confirmed by the theoretical prediction.  相似文献   

6.
Two holographic lithography systems are demonstrated for easy and large-area fabrication of 2D and 3D photonic crystal (PhC) microstructures in a polymer dispersed liquid crystal (PDLC) by applying a single top-cut hexagon prism. A six-beam system has been used to produce 2D hexagonal PhCs. By adding an additional mirror, a twelve-beam system is demonstrated to fabricate 3D PhCs with ultraviolet (UV) band-gap along the z direction. A good agreement is obtained for measured PhCs structure and theoretical results. Far-field diffraction patterns and electrical switching characteristics of the 2D and 3D PhC HPDLC films have been investigated. PACS 42.15.Eq; 42.40.Eq  相似文献   

7.
The Fabry-Perot resonance technique has been used to determine the propagation losses of planar photonic crystal (PC) waveguides. The structures are patterned into a GaInAsP confining layer on an InP substrate. Losses as low as 11 dB/mm have been measured on a guiding structure with three missing rows. The influence of the PC guide width and air-filling factor is demonstrated.  相似文献   

8.
In our previous paper, it was found that cotton yarn/TiO2-dispersed resin photonic crystals were fabricated successfully by applying textile technology. However, it is difficult to apply for practical use because these photonic crystals cannot change their shape flexibly. In this study, we fabricate the flexible photonic crystals using high-dielectric constant fibers. The high-dielectric constant fibers were made by inserting alumina balls into Teflon tubes. The crossed linear-fiber laminated fabric and multilayered woven fabric with an fcc lattice structure were structured by aligning high-dielectric constant fibers periodically. These photonic crystals consist of air and high-dielectric constant fibers. The attenuation of transmission amplitude through the photonic crystals was measured. The photonic crystal of crossed linear-fiber laminated fabric exhibits a forbidden gap in the range from 16 to 18 GHz range. On the other hand, the photonic crystal of multilayered woven fabric, which was fabricated by the same parameter with crossed linear-fiber laminated fabric, also exhibits a forbidden gap in the range from 13 to 16 GHz range. Thus, we can successfully fabricate flexible photonic crystals of woven fabric using high-dielectric constant fibers.  相似文献   

9.
A detailed study of a platform of ultra-small photonic large-scale integrated circuits was conducted. Bandgap structure calculations of silicon-on-insulator (SOI) based photonic crystals have been investigated. The photonic crystal consists of dielectric cylinders in air. Using the band structure calculations we obtained design parameters for the proposed structures. The coupling between the photonic crystal and a waveguide fabricated from SOI system has been analysed. It is shown that the optical coupling is improved by interfacing different types of spot-size converters (SSCs) between the SOI waveguide and the photonic crystal. Also, the possibility and limitations of silicon doped germanium and SOI photonic crystals to analyse the light guiding in the third dimension is discussed.  相似文献   

10.
In this paper, we apply an antiresonant reflecting layer concept in photonic crystal based waveguides. We have proposed a thin core ARRPCW with linear waveguide carved in it and hence calculated the transmission spectra for various length of waveguide and have shown that the longer waveguides in ARRPCW yields transmission with significantly high quality factor. Comparison of the transmission characteristics of normal conventional planar ARROW-B waveguides & ARRPCW has also been reported. The 2D FDTD numerical modeling reveals improved transmission for various lengths of planar ARROW and ARRPCW with low losses in long waveguides. Transmittance and quality factor are also calculated to confirm superior performance of the proposed design of ARROW based photonic crystal waveguide.  相似文献   

11.
In this paper, we demonstrate the monolithic integration of a conventional waveguide, a photonic crystal demultiplexer, a photonic crystal taper coupler, photonic crystal waveguides, and photodiodes in InGaAsP-based material to form a planar nano-optics system. Photonic crystal demultiplexers consist of hexagonally arranged air holes. Finite-difference time-domain method is implemented to investigate the performance of the demultiplexer. The system is fabricated using e-beam lithography and conventional photolithography. The input light at wavelengths of 1530 and 1550 nm can be separated using the demultiplexing system. These can then be detected by photodiodes that exhibit a wide-bandwidth performance of 22 GHz.  相似文献   

12.
G.Q. Liu  H.H. Hu  Z.S. Wang  Z.M. Liu 《Optik》2011,122(1):9-14953
High quality photonic crystal heterostructures with a thin titania planar defect layer between its two constitutional photonic crystals were fabricated and their structural and optical properties were analyzed. The results suggest that the thin planar defect layer is beneficial to separate the two constitutional photonic crystals from each other and to reduce the roughness of the interface. The quality of the resulting photonic crystal heterostructures is improved largely and the main features of the photonic band gaps of the two constitutional photonic crystals are inherited. The predominant optical quality of these heterostructures (e.g. deep double photonic band gaps and steep photonic band edges) may afford new flexibility and functionality for engineered photonic behavior in practical devices such as late-model light-operated switches.  相似文献   

13.
采用旋涂法制备了多层聚乙二醇/二氧化钛(PEG/TiO2)一维光子晶体膜,通过控制旋涂时间、旋涂速度和聚乙二醇溶液质量浓度,制备出具有不同光子禁带的PEG/TiO2一维光子晶体膜。制备的PEG/TiO2膜对有机溶剂二甲亚砜(DMSO)和强碱溶液有双重响应。  相似文献   

14.
We demonstrate optical properties of one-dimensional photonic crystals (PC), which are fabricated using high-aspect-ratio etching on a V-grooved silicon wafer. The measured transmission spectrum has an obvious band gap; the suppression is over 30 dB. The quite small insertion loss of 1.9 dB is achieved by induced coupled plasma (ICP) cryogenic etching and direct coupling to the optical fiber aligned in the V-groove. We also successfully observed peaks originating from a localized cavity mode. Such a microcavity enables control of the light, which qualifies photonic crystal as a fundamental structure of optical functional devices. These results lead to achievement of integrated Si-based photonic circuits.  相似文献   

15.
刘頔威  刘盛纲 《物理学报》2007,56(5):2747-2750
二维单斜点阵光子晶体在光学聚焦器件及光子晶体波导中有重要的应用价值,详细讨论了二维单斜点阵光子晶体的第一布里渊区及带隙计算,并与常规方法计算得出的二维正三角形晶格光子晶体的带隙结构进行了比较.最后讨论了临界条件下二维单斜点阵光子晶体的带隙结构,证明了本方法的有效性.  相似文献   

16.
Absolute band gaps in two-dimensional graphite photonic crystal   总被引:1,自引:0,他引:1  
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photonic crystal structure was studied using transfer matrix method. Transmission spectra calculations indicate that such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizations and for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2D graphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some properties of a three-dimensional (3D) photonic crystal.  相似文献   

17.
李宇杰  谢凯  许静  李效东  韩喻 《物理学报》2010,59(2):1082-1087
通过溶剂蒸发对流自组装法制备SiO2胶体晶体,采用低压化学气相沉积法填充Si,制备得到Si反蛋白石(opal)三维光子晶体.采用扫描电子显微镜对Si反opal的显微形貌进行表征,采用平面波展开法理论模拟Si反opal的光子带隙,采用傅里叶变换红外光谱仪测试其光学性能.研究结果表明:Si在SiO2微球空隙内填充致密均匀,显微红外光谱测试的光子带隙反射峰位置及带宽与理论计算基本符合.变角度反射光谱测试表明,Si反opal沿不同角度入射时在中心波长3319nm处均存在明显的反射峰,证明其具有完全光子带隙,带隙位于中红外大气窗口区域.  相似文献   

18.
We present our experimental demonstration of self-collimation inside a three-dimensional (3D) simple cubic photonic crystal at microwave frequencies. The photonic crystal was designed with unique dispersion property and fabricated by a high precision computer-controlled machine. The self-collimation modes were excited by a grounded waveguide feeding and detected by a scanning monopole. Self-collimation of electromagnetic waves in the 3D photonic crystal was demonstrated by measuring the 3D field distribution, which was shown as a narrow collimated beam inside the 3D photonic crystal but a diverged beam in the absence of the photonic crystal.  相似文献   

19.
韩静  章鹤龄  赵天奇 《光子学报》2014,40(5):735-739
报道了一种新型的利用激光全息技术制作光子晶体的记录材料,即自制的非水溶性光致聚合物.用绿光作为光源对材料性能参量做简单测试,经测试其衍射效率可达85%,在波长为514.5 nm处拥有较高的吸收率,且该材料的后处理过程简单,只需热烘.利用Matlab简单模拟全息法制作光子晶体的过程,经模拟得到干涉的光束越多,光子晶体的晶格结构越复杂.设计了制作二维、三维光子晶体的实验光路,分光元件分别为掩模板和去顶棱镜.实验结果表明,利用非水溶性光致聚合物可制作大面积、大体积、耐高温和高强度的二、三维光子晶体,且其晶体结构与Matlab模拟的结果基本一致|利用非水溶性光致聚合物作为记录材料时,光路的搭建是影响实验结果的重要因素.  相似文献   

20.
用一维光子带隙结构增强硫化镉双光子吸收研究   总被引:2,自引:2,他引:0  
用真空镀膜方法制备了含有单个CdS缺陷层的具有不同周期和结构参量的TiO2/SiO2一维光子晶体。用抽运一探测技术研究了CdS缺陷层的双光子吸收(TPA)现象。实验结果表明:一维光子晶体中CdS缺陷层的双光子吸收显著增强。不同周期和结构参量的一维光子晶体中CdS缺陷层的双光子吸收系数不同。双光子吸收的增强来源于由光局域化导致的缺陷层的电场强度的增加。缺陷层电场强度与一维光子晶体的结构有关,如周期,光子带隙的位置与宽度及缺陷模式等因素都会影响缺陷层电场强度。采用四分之一波长的高低折射率介质层和与入射波长匹配的缺陷模可以得到最大的缺陷层电场强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号