首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exploration of the NiX(2)/py(2)CO/Et(3)N (X = F, Cl, Br, I; py(2)CO = di-2-pyridyl ketone; Et(3)N = triethylamine) reaction system led to the tetranuclear [Ni(4)Cl(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Cl(2)·2Et(2)O (1·2Et(2)O) and [Ni(4)Br(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Br(2)·2Et(2)O (2·2Et(2)O) and the trinuclear [Ni(3){py(2)C(OMe)O}(4)]I(2)·2.5MeOH (3·2.6MeOH), [Ni(3){py(2)C(OMe)O}(4)](NO(3))(0.65)I(1.35)·2MeOH (4·2MeOH) and [Ni(3){py(2)C(OMe)O}(4)](SiF(6))(0.8)F(0.4)·3.5MeOH (5·3.5MeOH) aggregates. The presence of the intermediate size Cl(-) and Br(-) anions resulted in planar tetranuclear complexes with a dense hexagonal packing of cations and donor atoms (tetramolybdate topology) where the X(-) anions participate in the core acting as bridging ligands. The F(-) and I(-) anions do not favour the above arrangement resulting in triangular complexes with an isosceles topology. The magnetic properties of 1-3 have been studied by variable-temperature dc, variable-temperature and variable-field ac magnetic susceptibility techniques and magnetization measurements. All complexes are high-spin with ground states S = 4 for 1 and 2 and S = 3 for 3.  相似文献   

2.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   

3.
The copper(II) complex Cu(2)L(OMe)(H(2)O)(3), [middle dot]3H(2)O [H(3)L = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine] was obtained and recrystallised in methanol to yield crystals of [[Cu(2)L(OMe)]](2).2.5MeOH.4H(2)O, 1.2.5MeOH.4H(2)O. Its single X-ray study shows that it contains two crystallographically different but chemically equivalent dinuclear [Cu(2)L(OMe)] 1 molecules in the asymmetric unit cell. The copper atoms of each dinuclear moiety are in distorted square-pyramidal environments, with both pyramids sharing an apical phenolate and a basal methanolate oxygen atom. Magnetic characterisation of 1.3H(2)O shows a quite strong intramolecular ferromagnetic coupling between both metal atoms. Extended Huckel calculations reveal that the intradinuclear magnetic interaction seems to be mediated by the exogenous methanolate bridging ligand.  相似文献   

4.
A tetranuclear mixed ligand copper(II) complex of a pyrazole containing Schiff base and a hydroxyhexahydropyrimidylpyrazole and copper(II) and nickel(II) complexes of the Schiff base having N-donor atoms have been investigated. A 2 equiv amount of 5-methyl-3-formylpyrazole (MPA) and 2 equiv of 1,3-diamino-2-propanol (1,3-DAP) on reaction with 1 equiv of copper(II) nitrate produce an unusual tetranuclear mixed ligand complex [Cu4(L1)2(L2)2(NO3)2] (1), where H2L1 = 1,3-bis(5-methyl-3-formylpyrazolylmethinimino)propane-2-ol and HL2 = 5-methyl-3-(5-hydroxyhexahydro-2-pyrimidyl)pyrazole. In contrast, a similar reaction with nickel(II) nitrate leads to the formation of a hygroscopic intractable material. On the other hand, the reaction involving 2 equiv of MPA and 1 equiv each of 1,3-DAP and various copper(II) salts gives rise to two types of products, viz. [Cu(T3-porphyrinogen)(H2O)]X2 (X = ClO4, NO3, BF4 (2)) (T3-porphyrinogen = 1,6,11,16-tetraza-5,10,15,20-tetrahydroxy-2,7,12,17-tetramethylporphyrinogen) and [Cu(H2L1)X]X x H2O (X = Cl (3), Br (4)). The same reaction carried out with nickel(II) salts also produces two types of compounds [Ni(H2L1)(H2O)2]X2 [X = ClO4 (5), NO3 (6), BF4 (7)] and [Ni(H2L1)X2] x H2O [X = Cl (8), Br (9)]. Among the above species 1, 3, and 5 are crystallographically characterized. In 1, all four copper atoms are in distorted square pyramidal geometry with N4O chromophore around two terminal copper atoms and N5 chromophore around two inner copper atoms. In 3, the copper atom is also in distorted square pyramidal geometry with N4Cl chromophore. The nickel atom in 5 is in a distorted octahedral geometry with N4O2 chromophore, where the metal atom is slightly pulled toward one of the axial coordinated water molecules. Variable-temperature (300 to 2 K) magnetic susceptibility measurements have been carried out for complex 1. The separations between the metal centers, viz., Cu(1)...Cu(2), Cu(2)...Cu(2)A, and Cu(2)A...Cu(1)A are 3.858, 3.89, and 3.858 A, respectively. The overall magnetic behavior is consistent with strong antiferromagnetic interactions between the spin centers. The exchange coupling constants between Cu(1)...Cu(2) and Cu(2)...Cu(2A) centers have turned out to be -305.3 and -400.7 cm(-1), respectively, resulting in a S = 1/2 ground state. The complexes are further characterized by UV-vis, IR, electron paramagnetic resonance, and electrochemical studies.  相似文献   

5.
Zhang XM  Fang RQ 《Inorganic chemistry》2005,44(11):3955-3959
Replacement of linear ligand L in Cu(I)XL system (X = halide or pseudohalide; L = 4,4'-bipyridine or pyrazine) by neutral species Cu(pzc)2(H2O)x (pzc = 2-pyrazinecarboxylate) resulted in mixed-valence Cu(I,II) coordination polymers [Cu2(pzc)2Br(H2O)]n (1) and [Cu3(pzc)2(CN)2(H2O)2 x 2H2O]n (2). Complex 1 has two-dimensional (4,4) topological layer constructed by [CuBr]n chains and Cu(pzc)2(H2O) species, while 2 has a three-dimensional framework formed by linkage of two-dimensional (6,3) layers via ligand-unsupported Cu(I)-Cu(I) interactions. The two-dimensional (6,3) layer in 2 is constructed by zigzag [CuCN]n chains and Cu(pzc)2(H2O)2 species. Cyanides in 2 were produced by oxidative desulfation of SCN- anions.  相似文献   

6.
The reactions of the ligand 2-(2-pyridyl)benzthiazole (pbt) with CuBr 2 and ZnCl 2 in acetonitrile produce the complexes [Cu(pbt)Br 2] ( 1) and [Zn(pbt)Cl 2] ( 3), respectively. When complex 1 is dissolved in DMF, complex 2 is obtained as light-green crystals. The reaction of pbt with CuBr 2 in DMF also yields the complex [Cu(pbt)Br 2(dmf)] ( 2) (dmf = dimethylformamide). Complexes 1- 3 were characterized by X-ray crystallography. Complexes 1 and 3 have distorted tetrahedral coordination environments, and complex 2 is constituted of two slightly different copper centers, both exhibiting distorted trigonal bipyramidal geometries. Complexes 1 and 2 cleave phiX174 phage DNA, both in the presence and the absence of reductant. The free ligand pbt does not show any DNA-cleaving abilities. The poor solubility of complex 3 makes it not applicable for biological tests. The occurrence of DNA breaks in the presence of various radical scavengers suggests that no diffusible radicals are involved in the DNA cleavage by complex 1, as none of the scavengers inhibit the cleavage reaction. The DNA-cleavage products are not religated with the enzyme T4 DNA ligase, which is an additional proof that the cleavage is nonhydrolytic. Most probably the cleaving reaction involves reactive oxygen species, which could not be trapped, leading to an oxidative mechanism. An easy oxidation of Cu (II)(pbt)Br 2 to Cu (III) in DMF and the reduction of the same to Cu (I), under similar electrochemical conditions may lead to the in situ activation of molecular oxygen, resulting in the formation of metal solvated nondiffusible radicals able to prompt the oxidative cleavage of DNA. Complex 1 and the pure ligand exhibit remarkable cytotoxic effects against the cancer cell lines L1210 and A2780 and also against the corresponding cisplatin-resistant mutants of these cell lines.  相似文献   

7.
Complexes [PPh3Cu(Tr(Mes,Me))] (1), [PPh3Cu(Tr(Me,o-Py))] (2), and [PPh3Cu(Br(Mes)pz(o-Py))] (3) (Tr(Mes,Me) = hydrotris[1,4-dihydro-3-methyl-4-mesityl-5-thioxo-1,2,4-triazolyl]borate; Tr(Me,o-Py) = hydrotris[1,4-dihydro-4-methyl-3-(2-pyridyl)-5-thioxo-1,2,4-triazolyl]borate; Br(Mes)pz(o-Py) = hydro[bis(thioxotriazolyl)-3-(2-pyridyl)pyrazolyl]borate; PPh3 = triphenylphosphine) were synthesized by the reaction of dinuclear complexes [Cu(Tr(Mes,Me))]2, [Cu(Tr(Me,o-Py))]2, [Cu(Br(Mes)pz(o-Py))]2, and PPh3. 1-3 were characterized by 1H, 13C, and 31P NMR spectroscopy and ESI-mass spectrometry. Crystal structure analyses were performed for 1 and 2. Both complexes crystallize in the triclinic P space group with the metal in a slightly distorted tetrahedral geometry (S3P coordination) bound by a kappa3-S3 ligand and a PPh3 molecule. The solution molecular structures were investigated by means of variable-temperature (210-310 K, CDCl3, 1-2; 200-310 K, CD2Cl2, 3) and NOESY NMR spectroscopy. The solution structures of 1-2 are in accordance with the X-ray structures, and the complexes do not exhibit fluxional behavior. On the other hand, 3 is subject to an equilibrium between two species with a coalescing temperature of approximately 260 K. DFT geometry optimizations suggest that the major species of 3 consists of the Br(Mes)pz(o-Py) ligand bound to Cu(I) in the kappa3-S2H fashion with two C=S groups and a [Cu...H-B] interaction. A PPh3 completes the copper coordination (S2HP coordination). The complex [TuCu(Tr(Mes,Me))] (4) (Tu = thiourea) was crystallized using an excess of Tu with respect to [Cu(Tr(Me,2-Py))]2 (approximately a 6:1 ratio). The metal adopts a distorted tetrahedral geometry with an overall S3H coordination determined by the bound kappa3-S2H ligand (two C=S groups and a [B-H...Cu] interaction) and by a Tu. The reactivity of dinuclear complexes [Cu(Tr(Mes,Me))]2, [Cu(Tr(Me,o-Py))]2, and [Cu(Br(Mes)pz(o-Py))]2 with monodentate ligands was investigated by means of NMR titrations with PPh3, Tu. and pyridine (Py), and formation constants for the adducts [DCu(L)] (D = monodentate donor, L = tripodal ligand) were determined.  相似文献   

8.
A new sugar-derived Schiff's base ligand N-(3-tert-butyl-2-hydroxybenzylidene)-4,6-O-ethylidene-beta-D-glucopyranosylamine (H3L1) has been developed which afforded the coordinatively labile, alcoholophilic trinuclear Cu(II) complex [Cu3(L1)2(CH3OH)(H2O)] (1). Complex 1 has been further used in the synthesis of a series of alcohol-bound complexes with a common formula of [Cu3(L1)2(ROH)2] (R = Me (2), Et (3), nPr (4), nBu (5), nOct (6)). X-ray structural analyses of complexes 2-6 revealed the collinearity of trinuclear copper(II) centers with Cu-Cu-Cu angles in the range of 166-172 degrees . The terminal and central coppers are bound with NO3 and O4 atoms, respectively, and exhibit square-planar geometry. The trinuclear structures of 2-6 can be viewed as the two {Cu(L1)}- fragments capture a copper(II) ion in the central position, which is further stabilized by a hydrogen-bonding interaction between the alcohol ligands and the sugar C-3 alkoxo group. Complex 2 exhibits a strong antiferromagnetic interaction between the Cu(II) ions (J = -238 cm(-1)). Diffusion of methanol into a solution of complex 1 in a chloroform/THF mixed solvent afforded the linear trinuclear complex [Cu(3)(L1)2(CH3OH)2(THF)2] (7). The basic structure of 7 is identical to complex 2; however, THF binding about the terminal coppers (Cu-O(THF) = 2.394(7) and 2.466(7) A) has introduced the square-pyramidal geometry, indicating that the planar trinuclear complexes 2-6 are coordinatively unsaturated and the terminal metal sites are responsible for further ligations. In the venture of proton-transfer reactions, a successful proton transfer onto the saccharide C-3 alkoxo group has been achieved using 4,6-O-ethylidene-d-glucopyranose, resulting in the self-assembled tetranuclear complex, [Cu4(HL1)4] (8), consisting of the mononuclear Cu(II) chiral building blocks, {Cu(HL1)}.  相似文献   

9.
The coordination chemistry of 6-methylpyridine-2-methanol (1) and enantiopure (R)-1-(6-methylpyridin-2-yl)ethanol (2) with a range of divalent first-row transition metal salts has been investigated in an effort to determine whether hydrogen-bonded helicates will form, as observed for cobalt(II) salts. Hydrogen-bonded helicates, [Cu2(1)2(1-H)2X2] (X = Cl, Br), were only observed upon combining 1 with CuCl2 and CuBr2 in MeOH solution. Other metal salts led to alternative products, viz. Cu(ClO4)2 in the presence of base gives [Cu2(1)2(1-H)2](ClO4)2, ZnCl2 and ZnBr2 give the 1-D helical coordination polymers [Zn(1-H)Cl]infinity and [Zn(1-H)Br]infinity, a mixture of NiCl2 and Ni(OAc)2 produces the [Ni4(1-H)4Cl2(OAc)2(MeOH)2] cubane, NiCl2 leads to the [Ni4(1-H)4Cl4(MeOH)4] cubane, while MnCl2 gives the known cubane [Mn4(1-H)6Cl4]. The reaction of 2 with CuCl2 produces the mononuclear complex Lambda-[Cu(2)2Cl]Cl, while reaction with CuBr2 leads to a dimer, Lambda,Lambda-[Cu2(2)3(2-H)Br2]Br, which is held together by a single hydrogen bond between the monomeric subunits. The solid-state CD spectra of these latter complexes were recorded and found to be very similar. The temperature-dependent magnetic behavior of [Cu2(1)2(1-H)2X2] (X = Cl, Br), [Cu2(1)2(1-H)2](ClO4)2, [Cu2(2)3(2-H)Br2]Br, and [Ni4(1-H)4Cl2(OAc)2(MeOH)2] was investigated. Weak antiferromagnetic coupling between the copper(II) centers is mediated by the hydrogen bonds in the [Cu2(1)2(1-H)2X2] (X = Cl, Br) complexes.  相似文献   

10.
A novel (N6O4) macrocyclic ligand (L) and its Cu(II) complexes have been prepared and characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and conductivity measurements. Quantum chemical calculations have also been carried out at B3LYP/6-31+G(d,p) to study the structure of the ligand and one of its complexes. The results show a novel macrocyclic ligand with potential amide oxygen atom, amide and amine nitrogen atoms available for coordination. Distorted square pyramidal ([Cu(L)Cl]Cl·2.5H2O (1), [Cu(L)NO3]NO(3)·3.5H2O (2), and [Cu(L)Br]Br·3H2O (4) and octahedral ([Cu(L)(OAc)2]·5H2O (3)) geometries were proposed. The EPR data of 1, 2, and 4 indicate d1x2(-y)2 ground state of Cu(II) ion with a considerable exchange interaction. The measured cytotoxicity for L and its complexes (1, 2) against three tumor cell lines showed that coordination improves the antitumor activity of the ligand; IC50 for breast cancer cells are ≈8.5, 3, and 4 μg/mL for L and complexes (1) and (2), respectively.  相似文献   

11.
The dinuclear compound [CuL2(py)U(acac)2] has been synthesized by treating [Cu(H2L2)] with U(acac)4 (L2 = N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine) and shows the antiferromagnetic Cu-U interaction; the distinct magnetic behaviour of the trinuclear complexes [(CuL2)2U] (antiferromagnetic) and [[CuL1(py)]U[CuL1]] (ferromagnetic) revealed the major influence of the Cu(II) ion coordination on the exchange interaction (L1 = N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine).  相似文献   

12.
Crystal structures of the copper(I) complexes 1(X), 2, and 3 of a series of tridentate ligands L1(X), L2, and L3, respectively (L1(X): p-substituted derivatives of N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine; X=H, Me, OMe, Cl, NO(2); L2: N,N-bis[2-(2-pyridyl)ethyl]-2-methyl-2-phenylethylamine; L3: N,N-bis[2-(2-pyridyl)ethyl]-2,2-diphenylethylamine) were solved to demonstrate that all the copper(I) complexes involve an eta(2) copper-arene interaction with the phenyl ring of the ligand sidearm. The Cu(I) ion in each complex has a distorted tetrahedral geometry consisting of the three nitrogen atoms (one tertiary amine nitrogen atom and two pyridine nitrogen atoms) and C(1)-C(2) of the phenyl ring of ligand sidearm, whereby the Cu-C distances of the copper-arene interaction significantly depend on the para substituents. The existence of the copper-arene interaction in a nonpolar organic solvent (CH(2)Cl(2)) was demonstrated by the observation of an intense MLCT band around 290 nm, and the magnitude of the interaction was evaluated by detailed analysis of the (1)H and (13)C NMR spectra and the redox potentials E(1/2) of the copper ion, as well as by means of the ligand-exchange reaction between the phenyl ring and CH(3)CN as an external ligand. The thermodynamic parameters DeltaH(o) and DeltaS(o) for the ligand-exchange reaction with CH(3)CN afforded a quantitative measure for the energy difference of the copper-arene interaction in the series of copper(I) complexes. Density functional studies indicated that the copper(I)-arene interaction mainly consists of the interaction between the d(z(2) ) orbital of Cu(I) and a pi orbital of the phenyl ring. The copper(I) complexes 1(X) reacted with O(2) at -80 degrees C in CH(2)Cl(2) to give the corresponding (micro-eta(2):eta(2)-peroxo)dicopper(II) complexes 4, the formation rates k(obs) of which were significantly retarded by stronger d-pi interaction, while complexes 2 and 3, which exhibit the strongest d-pi interaction showed significantly lower reactivity toward O(2) under the same experimental conditions. Thus, the d-pi interaction has been demonstrated for the first time to affect the copper(I)-dioxygen reactivity, and represents a new aspect of ligand effects in copper(I)-dioxygen chemistry.  相似文献   

13.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent.  相似文献   

14.

Reaction of the ligand 3-(pyridin-2-yl)pyrazole (L) with Cu(ClO4)2 and CuX2 (X=Cl, Br, I) gives complexes with stoichiometry [Cu(L)2X]ClO4 (X = Cl, Br, I). The new complexes were characterized by elemental analyses and infrared and electronic spectroscopy. The crystal structure of the [Cu(L)2Br]ClO4 was determined by X-ray crystallography. The cation complex (i.e. [Cu(L)2Br]P) contains copper(II) with a distorted trigonal bipyramid geometry with a Br ligand occupying an equatorial site. The penta-coordinated metal atom is bonded to two pyridinic nitrogens, two pyrazolic nitrogens, and one bromide anion. The pyrazolic H atoms are hydrogen bonded to Br atoms, resulting in infinite hydrogen-bonded chains running in the b direction. There are π‐π stacking interactions (charge-transfer arrays) between the parallel aromatic rings belonging to adjacent chains that may help to form hydrogen bonding in the coordination geometry around Cu (II).  相似文献   

15.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

16.
Magnetic susceptibility and EPR studies show that trinuclear Cu(II)-pyrazolato complexes with a Cu(3)(mu3-X)2 core (X = Cl, Br) are ferromagnetically coupled: J(Cu-Cu) = +28.6 cm(-1) (X = Cl), +3.1 cm(-1) (X = Br). The orderly transition from an antiferromagnetic to a ferromagnetic exchange among the Cu centers of Cu(3)(mu3-X) complexes, X = O, OH, Cl, Br, follows the change of the Cu-X-Cu angle from 120 degrees to approximately 80 degrees. The crystal structures of [Bu4N]2"[Cu3(mu3-Br)2(mu-pz*)3Br3] (pz* = pz (1a) or 4-O2N-pz (1b), pz = pyrazolato anion, C(3)H(3)N(2)(1-)) are presented.  相似文献   

17.
An amine mediated C-Cl bond activation process of the solvent chloroform has been explored by a coordinatively labile trinuclear Cu(II) complex, [Cu3(L1)2(MeOH)(H2O)] (1), derived from N-(3-tert-butyl-2-hydroxybenzylidene)-4,6-O-ethylidene--D-glucopyranosylamine (H3L1). The effect of activation is extremely high with methylamine, resulting in the formation of [Cu(MeNH2)5]Cl2 (2) and [Cu(L2)2] (3; HL2 = 2-tert-butyl-6-[(methylimino)methyl]phenol), however, under identical conditions it is moderate with ethylamine resulting in the isolation of crystals of the intermediate amine bound trinuclear copper(II) complex, [Cu3(L1)2(EtNH2)2(MeOH)2] (5), which was further converted into the mononuclear complex, [Cu(HL1)(EtNH2)] (6), in a novel crystal-to-crystal transformation. The successive isolation of the ethylamine-bound tri- and mononuclear complexes, 5 and 6, supported the occurrence of proton transfer reactions, which might be a key step in C-Cl bond activation. The primary and secondary amines, 2-aminomethylpyridine, N,N-dimethylethylenediamine, and 1,4,7-triazacyclononane, also having chelating features further enhance the rate of activation. No activation has been noted in the case of triethylamine and N,N,N,N-tetramethylethylenediamine. Formation of a carbene-trapped compound, 2,6-xylyl isocyanide, was confirmed in the reaction of complex 1 with 1,4,7-triazacyclononane and 2,6-xylidine in CHCl3, suggesting that the C-Cl bond cleavage led to the generation of dichlorocarbene. In addition, the mononuclear complex 6 has been transformed into a homotrinuclear complex [Cu3(L1)2(MeOH)2] by treatment with Cu(II) ions in MeOH/CHCl3, suggesting the possibility that the former could be regarded as a suitable metalloligand for heterotrimetallic complex synthesis.  相似文献   

18.
1 INTRODUCTION In the last decade, we have been interested in the synthesis of [PPh4][(h5-C5Me5)MS3] (M = Mo, W)[1, 2] , Whose organometallic trisulfido anions show high reactivity towards various transition metals[3~6] . We once reported that the reaction of [PPh4][(h5-C5Me5)WS3] with CuBr in CH3CN afforded a double incomplete-cubane cluster [PPh4]2[(h5-C5Me5)WS3(CuBr)3]2[3], while the analogous reaction of [PPh4][(h5-C5Me5)WS3] with CuBr in CHCl3 gave rise to a 揻our-…  相似文献   

19.
Three cubane copper(II) clusters, namely [Cu(4)(HL')4] (1), [Cu4L2(OH)2] (2), and [Cu4L2(OMe)2] (3), of two pentadentate Schiff-base ligands N,N'-(2-hydroxypropane-1,3-diyl)bis(acetylacetoneimine) (H3L') and N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) (H3L), are prepared, structurally characterized by X-ray crystallography, and their variable-temperature magnetic properties studied. Complex 1 has a metal-to-ligand stoichiometry of 1:1 and it crystallizes in the cubic space group P43n with a structure that consists of a tetranuclear core with metal centers linked by a mu(3)-alkoxo oxygen atom to form a cubic arrangement of the metal and oxygen atoms. Each ligand displays a tridentate binding mode which means that a total of eight pendant binding sites remain per cubane molecule. Complexes [Cu4L2(OH)2] (2) and [Cu4L2(OMe)2] (3) crystallize in the orthorhombic space group Pccn and have a cubane structure that is formed by the self-assembly of two {Cu2L}+ units. The variable-temperature magnetic susceptibility data in the range 300-18 K show ferromagnetic exchange interactions in the complexes. Along with the ferromagnetic exchange pathway, there is also a weak antiferromagnetic exchange between the copper centers. The theoretical fitting of the magnetic data gives the following parameters: J1 = 38.5 and J2 = -18 cm(-1) for 1 with a triplet (S = 1) ground state and quintet (S = 2) lowest excited state; J1 = 14.7 and J2 = -18.4 cm(-1) for 2 with a triplet ground state and singlet (S = 0) lowest excited state; and J1 = 33.3 and J2 = -15.6 cm(-1) for 3 with a triplet ground state and quintet lowest excited state, where J1 and J2 are two different exchange pathways in the cubane {Cu4O4} core. The crystal structures of 2 * 6 H2O and 3 * 2 H2O * THF show the presence of channels containing the lattice solvent molecules.  相似文献   

20.
Complexes of the type Cu(L? S? S? L)X2 (X = Cl, Br) and Cu(L? S? S? L)2X (X = ClO4, BF4) were prepared in CHCl3? MeOH solution from CuX2 · 6 H2O (X = Cl, Br, ClO4, BF4) and bis-[2-(4, 6-dimethylpyrimidyl)]disulphide (L? S? S? L), and examined in the mid-(4000–250 cm?1) and far-i.r. (5000–60 cm?1) regions. Assignments for metal-ligand and metalhalogen vibrations were made. On the basis of these assignments, conductivity measurements and from magnetic moments and visible absorption data, the stereochemistry of the compounds was tentatively inferred. For Cu(L? S? S? L)X2 (X = Cl, Br) species may be proposed an essentially [CuN2X2] in-plane microsymmetry achieved through two pyrimidyl nitrogen atoms of a ligand molecule, to form a seven-membered chelate ring and two halide ions, with probable interaction along the z axis with adjacent molecules. The Cu(L? S? S? L)2X (X = ClO4, BF4) species, may be considered to contain isolated complexes cations, Cu(L? S? S? L) , or polynuclear cationic polymers, Cun(L? S? S? L), in which Cu(I) is, probably via N3S, tetrahedraly coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号