首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
本文采用小波潜变量回归(WLVR)方法,同时测定重叠的光谱信号。结合小波阈值法和主组分分析(PCA)改进除噪质量。八个误差判据用于推断因子数目。潜变量由小波处理过的信号投影到正交基矢量而获得。广义回归神经网络(GRNN)被应用于多组分同时测定。依据算法原理编制了三个程序(PWMRA、PWLVR和PGRNN)执行有关计算。三个方法(WLVR、LVR(潜变量回归)和GRNN)同时测定三组分混合物,获得满意的结果。  相似文献   

2.
We propose a new data compression method for estimating optimal latent variables in multi‐variate classification and regression problems where more than one response variable is available. The latent variables are found according to a common innovative principle combining PLS methodology and canonical correlation analysis (CCA). The suggested method is able to extract predictive information for the latent variables more effectively than ordinary PLS approaches. Only simple modifications of existing PLS and PPLS algorithms are required to adopt the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, different approaches for variable selection are studied in the context of near-infrared (NIR) multivariate calibration of textile. First, a model-based regression method is proposed. It consists in genetic algorithm optimisation combined with partial least squares regression (GA-PLS). The second approach is a relevance measure of spectral variables based on mutual information (MI), which can be performed independently of any given regression model. As MI makes no assumption on the relationship between X and Y, non-linear methods such as feed-forward artificial neural network (ANN) are thus encouraged for modelling in a prediction context (MI-ANN). GA-PLS and MI-ANN models are developed for NIR quantitative prediction of cotton content in cotton-viscose textile samples. The results are compared to full-spectrum (480 variables) PLS model (FS-PLS). The model requires 11 latent variables and yielded a 3.74% RMS prediction error in the range 0-100%. GA-PLS provides more robust model based on 120 variables and slightly enhanced prediction performance (3.44% RMS error). Considering MI variable selection procedure, great improvement can be obtained as 12 variables only are retained. On the basis of these variables, a 12 inputs ANN model is trained and the corresponding prediction error is 3.43% RMS error.  相似文献   

4.
A new procedure with high ability to enhance prediction of multivariate calibration models with a small number of interpretable variables is presented. The core of this methodology is to sort the variables from an informative vector, followed by a systematic investigation of PLS regression models with the aim of finding the most relevant set of variables by comparing the cross‐validation parameters of the models obtained. In this work, seven main informative vectors i.e. regression vector, correlation vector, residual vector, variable influence on projection (VIP), net analyte signal (NAS), covariance procedures vector (CovProc), signal‐to‐noise ratios vector (StN) and their combinations were automated and tested with the main purpose of feature selection. Six data sets from different sources were employed to validate this methodology. They originated from: near‐Infrared (NIR) spectroscopy, Raman spectroscopy, gas chromatography (GC), fluorescence spectroscopy, quantitative structure‐activity relationships (QSAR) and computer simulation. The results indicate that all vectors and their combinations were able to enhance prediction capability with respect to the full data sets. However, regression and NAS informative vectors from partial least squares (PLS) regression, both built using more latent variables than when building the model presented in most of tested data sets, were the best informative vectors for variable selection. In all the applications, the selected variables were quite effective and useful for interpretation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A wavelet-based latent variable regression (WLVR) method was developed to perform simultaneous quantitative analysis of overlapping spectrophotometric signals. The quality of the noise removal was improved by combining wavelet thresholding with principal component analysis (PCA). A method for selecting the optimum threshold was also developed. Eight error functions were calculated for deducing the number of factor. The latent variables were made by projecting the wavelet-processed signals onto orthogonal basis eigenvectors. Two-programs WMRA and WLVR, were designed to perform wavelet thresholding and simultaneous multicomponent determination. Experimental results showed the WLVR method to be successful even where there was severe overlap of spectra.  相似文献   

6.
This paper presents a Bayesian approach to the development of spectroscopic calibration models. By formulating the linear regression in a probabilistic framework, a Bayesian linear regression model is derived, and a specific optimization method, i.e. Bayesian evidence approximation, is utilized to estimate the model “hyper-parameters”. The relation of the proposed approach to the calibration models in the literature is discussed, including ridge regression and Gaussian process model. The Bayesian model may be modified for the calibration of multivariate response variables. Furthermore, a variable selection strategy is implemented within the Bayesian framework, the motivation being that the predictive performance may be improved by selecting a subset of the most informative spectral variables. The Bayesian calibration models are applied to two spectroscopic data sets, and they demonstrate improved prediction results in comparison with the benchmark method of partial least squares.  相似文献   

7.
An evaluation of computational performance and precision regarding the cross‐validation error of five partial least squares (PLS) algorithms (NIPALS, modified NIPALS, Kernel, SIMPLS and bidiagonal PLS), available and widely used in the literature, is presented. When dealing with large data sets, computational time is an important issue, mainly in cross‐validation and variable selection. In the present paper, the PLS algorithms are compared in terms of the run time and the relative error in the precision obtained when performing leave‐one‐out cross‐validation using simulated and real data sets. The simulated data sets were investigated through factorial and Latin square experimental designs. The evaluations were based on the number of rows, the number of columns and the number of latent variables. With respect to their performance, the results for both simulated and real data sets have shown that the differences in run time are statistically different. PLS bidiagonal is the fastest algorithm, followed by Kernel and SIMPLS. Regarding cross‐validation error, all algorithms showed similar results. However, in some situations as, for example, when many latent variables were in question, discrepancies were observed, especially with respect to SIMPLS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
It is imperfect to evaluate a subsampling variable selection method using only its prediction performance. To further assess the reliability of subsampling variable selection methods, dummy noise variables of different amplitudes were augmented to the original spectral data, and the false variable selection number was recorded. The reliabilities of three subsampling variable selection methods including Monte Carlo uninformative variable elimination (MC‐UVE), competitive adaptive reweighted sampling (CARS), and stability CARS (SCARS) were evaluated using this dummy noise strategy. The evaluation results indicated that both CARS and SCARS produced more parsimonious variable sets, but the reliabilities of their final variable sets were weaker than those of MC‐UVE. On the contrary, only marginal improvement on the prediction performance was obtained using MC‐UVE. Further experiments showed that removing white noise‐like variables beforehand would improve the reliability of variables extracted by CARS and SCARS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Extension of standard regression to the case of multiple regressor arrays is given via the Kronecker product. The method is illustrated using ordinary least squares regression (OLS) as well as the latent variable (LV) methods principal component regression (PCR) and partial least squares regression (PLS). Denoting the method applied to PLS as mrPLS, the latter was shown to explain as much or more variance for the first LV relative to the comparable L‐partial least squares regression (L‐PLS) model. The same relationship holds when mrPLS is compared to PLS or n‐way partial least squares (N‐PLS) and the response array is 2‐way or 3‐way, respectively, where the regressor array corresponding to the first mode of the response array is 2‐way and the second mode regressor array is an identity matrix. In a comparison with N‐PLS using fragrance data, mrPLS proved superior in a validation sense when model selection was used. Though the focus is on 2‐way regressor arrays, the method can be applied to n‐way regressors via N‐PLS. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Nonlinear kernel methods have been widely used to deal with nonlinear problems in latent variable methods. However, in the presence of structured noise, these methods have reduced efficacy. We have previously introduced constrained latent variable methods that make use of any available additional knowledge about the structured noise. These methods improve performance by introducing additional constraints into the algorithm. In this paper, we build upon our previous work and introduce hard‐constrained and soft‐constrained nonlinear partial least squares methods using nonlinear kernels. The addition of nonlinear kernels reduces the effects of structured noise in nonlinear spaces and improves the regression performance between the input and response variables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A novel method named OSC-WPT-PLS approach based on partial least squares (PLS) regression with orthogonal signal correction (OSC) and wavelet packet transform (WPT) as pre-processed tools was proposed for the simultaneous spectrophotometric determination of Al(III), Mn(II) and Co(II). This method combines the ideas of OSC and WPT with PLS regression for enhancing the ability of extracting characteristic information and the quality of regression. OSC is used to remove information in the response matrix D by subtracting the structured noise that is orthogonal to the concentration matrix C. Wavelet packet transform was applied to perform data compression, to extract relevant information, and to eliminate noise and collinearity. PLS was applied for multivariate calibration and noise reduction by eliminating the less important latent variables. In this case, using trials, the kind of wavelet function, the decomposition level, the number of OSC components and the number of PLS factors for the OSC-WPT-PLS method were selected as Daubechies 4, 3, 2 and 3, respectively. A program (POSCWPTPLS) was designed to perform the simultaneous spectrophotometric determination of Al(III), Mn(II) and Co(II). The relative standard errors of prediction (RSEP) obtained for total elements using OSC-WPT-PLS, WPT-PLS and PLS were compared. Experimental results demonstrated that the OSC-WPT-PLS method had the best performance among the three methods and was successful even when there was severe overlap of spectra.  相似文献   

12.
A novel projection modeling method for quantitative structure activity relationship (QSAR) and quantitative structure property relationship (QSPR) is developed in this paper. Orthogonalization of block variables is introduced to deal with the problem of variable selection. Projections based on least squares are used to construct the modeling space in order to search for the best regression directions for chemical modeling. A suitable prediction space for such a model is further defined to confine the usage range of the model. Three real data sets were analyzed to check the performance of the proposed modeling method. The results obtained from Monte‐Carlo cross‐validation (MCCV) showed that the proposed modeling method might provide better results for QSAR and QSPR modeling than PCR and PLS with respect to both fitting and prediction abilities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
小波包变换潜变量回归分辨重叠的紫外光谱   总被引:1,自引:1,他引:0  
采用小波包变换潜变量回归(WPLVR)方法,同时测定联苯、苯酚和邻苯二酚。该法结合小波包变换和潜变量回归改进除噪质量。通过最佳化,选择了小波函数及小波包分解水平(L)。编制了两个程序PWPLVR和PFTLVR进行WPLVR和付立叶变换潜变量回归(FTLVR)法计算。试验结果表明WPLVR法是成功的且优于FTLVR法。  相似文献   

14.
小波包变换潜变量回归同时测定三组分混合物   总被引:2,自引:0,他引:2  
采用小波包变换潜变量回归 (WPLVR)方法 ,同时测定水杨酸甲酯(MSA)、邻苯二甲酸二丁酯 (DBP)和邻苯二甲酸氢钾 (PHP)。该法结合小波包变换和潜变量回归改进除噪质量。通过最佳化 ,选择了小波函数及小波包分解水平 (L)。编制了两个程序 (PWPLVR)和 (PFTLVR)进行WPLVR和付立叶变换潜变量回归 (FTLVR)法计算。实验结果表明WPLVR法是成功的且优于FTLVR法。  相似文献   

15.
《Electrophoresis》2017,38(13-14):1713-1723
In this work, we present a novel probabilistic peak detection algorithm based on a Bayesian framework for forensic DNA analysis. The proposed method aims at an exhaustive use of raw electropherogram data from a laser‐induced fluorescence multi‐CE system. As the raw data are informative up to a single data point, the conventional threshold‐based approaches discard relevant forensic information early in the data analysis pipeline. Our proposed method assigns a posterior probability reflecting the data point's relevance with respect to peak detection criteria. Peaks of low intensity generated from a truly existing allele can thus constitute evidential value instead of fully discarding them and contemplating a potential allele drop‐out. This way of working utilizes the information available within each individual data point and thus avoids making early (binary) decisions on the data analysis that can lead to error propagation. The proposed method was tested and compared to the application of a set threshold as is current practice in forensic STR DNA profiling. The new method was found to yield a significant improvement in the number of alleles identified, regardless of the peak heights and deviation from Gaussian shape.  相似文献   

16.
The nearest shrunken centroid (NSC) Classifier is successfully applied for class prediction in a wide range of studies based on microarray data. The contribution from seemingly irrelevant variables to the classifier is minimized by the so‐called soft‐thresholding property of the approach. In this paper, we first show that for the two‐class prediction problem, the NSC Classifier is similar to a one‐component discriminant partial least squares (PLS) model with soft‐shrinkage of the loading weights. Then we introduce the soft‐threshold‐PLS (ST‐PLS) as a general discriminant‐PLS model with soft‐thresholding of the loading weights of multiple latent components. This method is especially suited for classification and variable selection when the number of variables is large compared to the number of samples, which is typical for gene expression data. A characteristic feature of ST‐PLS is the ability to identify important variables in multiple directions in the variable space. Both the ST‐PLS and the NSC classifiers are applied to four real data sets. The results indicate that ST‐PLS performs better than the shrunken centroid approach if there are several directions in the variable space which are important for classification, and there are strong dependencies between subsets of variables. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Du W  Gu T  Tang LJ  Jiang JH  Wu HL  Shen GL  Yu RQ 《Talanta》2011,85(3):1689-1694
As a greedy search algorithm, classification and regression tree (CART) is easily relapsing into overfitting while modeling microarray gene expression data. A straightforward solution is to filter irrelevant genes via identifying significant ones. Considering some significant genes with multi-modal expression patterns exhibiting systematic difference in within-class samples are difficult to be identified by existing methods, a strategy that unimodal transform of variables selected by interval segmentation purity (UTISP) for CART modeling is proposed. First, significant genes exhibiting varied expression patterns can be properly identified by a variable selection method based on interval segmentation purity. Then, unimodal transform is implemented to offer unimodal featured variables for CART modeling via feature extraction. Because significant genes with complex expression patterns can be properly identified and unimodal feature extracted in advance, this developed strategy potentially improves the performance of CART in combating overfitting or underfitting while modeling microarray data. The developed strategy is demonstrated using two microarray data sets. The results reveal that UTISP-based CART provides superior performance to k-nearest neighbors or CARTs coupled with other gene identifying strategies, indicating UTISP-based CART holds great promise for microarray data analysis.  相似文献   

18.
The Partial least squares class model (PLSCM) was recently proposed for multivariate quality control based on a partial least squares (PLS) regression procedure. This paper presents a case study of quality control of peanut oils based on mid‐infrared (MIR) spectroscopy and class models, focusing mainly on the following aspects: (i) to explain the meanings of PLSCM components and make comparisons between PLSCM and soft independent modeling of class analogy (SIMCA); (ii) to correct the estimation of the original PLSCM confidence interval by considering a nonzero intercept term for center estimation; (iii) to investigate the potential of MIR spectroscopy combined with class models for identifying peanut oils with low doping concentrations of other edible oils. It is demonstrated that PLSCM is actually different from the ordinary PLS procedure, but it estimates the class center and class dispersion in the framework of a latent variable projection model. While SIMCA projects the original variables onto a few dimensions explaining most of the data variances, PLSCM components consider simultaneously the explained variances and the compactness of samples belonging to the same class. The analysis results indicate PLSCM is an intuitive and easy‐to‐use tool to tackle one‐class problems and has comparable performance with SIMCA. The advantages of PLSCM might be attributed to the great success and well‐established foundations of PLS. For PLSCM, the optimization of model complexity and estimation of decision region can be performed as in multivariate calibration routines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This article develops a Bayesian method for fault detection and isolation using a sparse reconstruction framework. The normal/training data is assumed to follow a signal‐plus‐noise model, and an indicator matrix is used to show whether the test data is from a faulty process. The distribution of the indicator matrix is modeled by a Laplacian distribution, which forces the indicator matrix to be a sparse one, and a Gibbs sampler is derived to obtain the estimation/reconstruction of the indicator matrix, the unobserved signals, and other parameters like signal mean, covariance, and noise variance. The faulty variables can then be detected and isolated by inspecting whether corresponding rows of the indicator matrix are zero. The proposed Bayesian approach is data driven; it allows for simultaneous fault detection and isolation. A simulation study and an industrial case study are used to test the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We introduce a new nonlinear partial least squares algorithm ‘Quadratic Fuzzy PLS (QFPLS)’ that combines the outer linear Partial Least Squares (PLS) framework and the Takagi–Sugeno–Kang (TSK) fuzzy inference system. The inner relation between the input and the output PLS score vectors is modeled by a quadratic TSK fuzzy inference system. The performance of the proposed QFPLS method is tested and compared against four other well‐known partial least squares methods (Linear PLS (LPLS), Quadratic PLS (QPLS), Linear Fuzzy PLS (LFPLS), and Neural Network PLS (NNPLS)) on various different types of randomly generated test data. QFPLS outperformed competitors based on two comparison measures: the output variables cumulative per cent variance captured by the PLS latent variables and the root mean‐square error of prediction (RMSEP). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号