首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper is about how to incorporate interaction effects in multi‐block methodologies. The method proposed is inspired by polynomial regression modelling in the case with only a few independent variables but extends/generalises the idea to situations where the blocks are potentially very large with respect to the number of variables. The method follows a so‐called type I sums of squares strategy where the linear effects (main effects) are incorporated sequentially and before the interactions. The sequential and orthogonalised partial least squares (SO‐PLS) technique is used as a basis for the proposal. The SO‐PLS method is based on sequential estimation of each new block by the PLS regression method after orthogonalisation with respect to blocks already fitted. The new method preserves the invariance already established for SO‐PLS and can be used for blocks with different dimensionality. The method is tested on one real data set with two independent blocks with different complexity and on a simulated data set with a large number of variables in each block. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Target projection (TP) also called target rotation (TR) was introduced to facilitate interpretation of latent‐variable regression models. Orthogonal partial least squares (OPLS) regression and PLS post‐processing by similarity transform (PLS + ST) represent two alternative algorithms for the same purpose. In addition, OPLS and PLS + ST provide components to explain systematic variation in X orthogonal to the response. We show, that for the same number of components, OPLS and PLS + ST provide score and loading vectors for the predictive latent variable that are the same as for TP except for a scaling factor. Furthermore, we show how the TP approach can be extended to become a hybrid of latent‐variable (LV) regression and exploratory LV analysis and thus embrace systematic variation in X unrelated to the response. Principal component analysis (PCA) of the residual variation after removal of the target component is here used to extract the orthogonal components, but X‐tended TP (XTP) permits other criteria for decomposition of the residual variation. If PCA is used for decomposing the orthogonal variation in XTP, the variance of the major orthogonal components obtained for OPLS and XTP is observed to be almost the same, showing the close relationship between the methods. The XTP approach is tested and compared with OPLS for a three‐component mixture analyzed by infrared spectroscopy and a multicomponent mixture measured by near infrared spectroscopy in a reactor. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The selection abilities of the two well‐known techniques of variable selection, synergy interval‐partial least‐squares (SiPLS) and genetic algorithm‐partial least‐squares (GA‐PLS), have been examined and compared. By using different simulated and real (corn and metabolite) datasets, keeping in view the spectral overlapping of the components, the influence of the selection of either intervals of variables or individual variables on the prediction performances was examined. In the simulated datasets, with decrease in the overlapping of the spectra of components and cases with components of narrow bands, GA‐PLS results were better. In contrast, the performance of SiPLS was higher for data of intermediate overlapping. For mixtures of high overlapping analytes, GA‐PLS showed slightly better performance. However, significant differences between the results of the two selection methods were not observed in most of the cases. Although SiPLS resulted in slightly better performance of prediction in the case of corn dataset except for the prediction of the moisture content, the improvement obtained by SiPLS compared with that by GA‐PLS was not significant. For real data of less overlapped components (metabolite dataset), GA‐PLS that tends to select far fewer variables did not give significantly better root mean square error of cross‐validation (RMSECV), cross‐validated R2 (Q2), and root mean square error of prediction (RMSEP) compared with SiPLS. Irrespective of the type of dataset, GA‐PLS resulted in models with fewer latent variables (LVs). When comparing the computational time of the methods, GA‐PLS is considered superior to SiPLS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The multivariate calibration methods—partial least squares (PLS), orthogonal signal correction and partial least squares (OSC‐PLS)—were employed for the prediction of total antioxidant activities of four Prunella L. species. High‐performance liquid chromatography (HPLC) and spectrophotometric approaches were used to determine the total antioxidant activity of the Prunella L. samples. Several preprocessing techniques such as smoothing and normalization were employed to extract the chemically relevant information from the data after alignment with correlation optimized warping. The importance of the preprocessing was investigated by calculating the root mean square error for the calibration set for the total antioxidant activity of Prunella L. samples. The models developed on the basis of the preprocessed data were able to predict the total antioxidant activity with a precision comparable to that of the reference 2,2‐azino‐di‐(3‐ethylbenzothialozine‐sulfonic acid) and 2,2‐diphenyl‐1‐picrylhydrazyl methods. The OSC‐PLS model seems preferable because of its predictive and describing abilities and good interpretability of the contribution of compounds to the total antioxidant activity. The contribution of individual phenolic compounds to the total antioxidant activity was identified by HPLC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Simultaneous determination of hydrazine (HZ) and thiosemicarbazide (TSC) by partial least squares (PLS) and principle component regression (PCR) was carried out based on kinetic data of novel potentiometry. The rate of chloride ion production in reaction of HZ and TSC with N‐chlorosuccinimide (NCS) was monitored by a chloride ion‐selective electrode. The experimental dada shows not only the good ability of ion‐selective electrodes (ISEs) as detectors for the direct determination of chloride ions but also for simultaneous kinetic‐potentiometric analysis using chemometrics methods. The methods are based on the difference observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and TSC can be performed in their concentration ranges of 0.7‐20.0 and 0.5‐20.0 μg mL?1, respectively. The total relative standard error for applying PLS and PCR methods to 9 synthetic samples in the concentration ranges of 0.8‐10 μg mL?1 of TSC and 1.0‐12.0 μg mL?1 of HZ was 4.62 and 4.98, respectively. The effects of certain foreign ions upon the reaction rate were determined for the assessment of the selectivity of the method. Both methods (PLS and PCR) were validated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and TSC in water samples.  相似文献   

6.
7.
Simultaneous anodic stripping voltammetric determination of Pb and Cd is restricted on gold electrodes as a result of the overlapping of these two peaks. This work describes the quantitative determination of a binary mixture system of Pb and Cd, at low concentration levels (up to 15.0 and 10.0 µg L?1 for Pb and Cd, respectively) by differential pulse anodic stripping voltammetry (DPASV; deposition time of 30 s), using a green electrode (vibrating gold microwire electrode) without purging in a chloride medium (0.5 M NaCl) under moderate acidic conditions (HCl 1.0 mM), assisted by chemometric tools. The application of multivariate curve resolution alternating least squares (MCR‐ALS) for the resolution and quantification of both metals is shown. The optimized MCR‐ALS models showed good prediction ability with concentration prediction errors of 12.4 and 11.4 % for Pb and Cd, respectively. The quantitative results obtained by MCR‐ALS were compared to those obtained with partial least squares (PLS) and classical least squares (CLS) regression methods. For both metals, PLS and MCR‐ALS results are comparable and superior to CLS. For Cd, as a result of the peak shift problem, the application of CLS was unsuitable. MCR‐ALS provides additional advantage compared to PLS since it estimates the pure response of the analytes signal. Finally, the built up multivariate calibration models, based either in MCR‐ALS or PLS regression, allowed to quantify concentrations of Pb and Cd in surface river water samples, with satisfactory results.  相似文献   

8.
To date, few efforts have been made to take simultaneous advantage of the local nature of spectral data in both the time and frequency domains in a single regression model. We describe here the use of a novel chemometrics algorithm using the wavelet transform. We call the algorithm dual-domain regression, as the regression step defines a weighted model in the time-domain based on the contributions of parallel, frequency-domain models made from wavelet coefficients reflecting different scales. In principle, any regression method can be used, and implementation of the algorithm using partial least squares regression and principal component regression are reported here. The performance of the models produced from the algorithm is generally superior to that of regular partial least squares (PLS) or principal component regression (PCR) models applied to data restricted to a single domain. Dual-domain PLS and PCR algorithms are applied to near infrared (NIR) spectral datasets of Cargill corn samples and sets of spectra collected on batch chemical reactions run in different reactors to illustrate the improved robustness of the modeling.  相似文献   

9.
Diagnostics are fundamental to multivariate calibration (MC). Two common diagnostics are leverages and spectral F‐ratios and these have been formulated for many MC methods such as partial least square (PLS), principal component regression (PCR) and classical least squares (CLS). While these are some of the most common methods of calibration in analytical chemistry, ridge regression is also common place and yet spectral F‐ratios have not been developed for it. Noting that ridge regression is a form of Tikhonov regularization (TR) and using the unifying filter factor representation for MC, this paper develops the filter factor form of leverages and spectral F‐ratios. The approach is applied to a spectral data set to demonstrate computational speed‐up advantages and ease of implementation for the filter factor representation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A PLS model for prediction of somatic cell count (SCC) based on near-infrared (NIR) spectra of unhomogenized milk is presented in the study. Samples of raw milk were collected from cows in the early lactation period (from 7th to 29th day after parturition). The NIR spectra were measured in the region 400–1100 nm. As reference method a fluoro-opto-electronic method was applied. Different preprocessing methods were investigated. The robust version of PLS regression was applied to handle outliers present in the dataset and the uninformative variable elimination–partial least squares (UVE–PLS) method was used to eliminate uninformative variables. The final model is acceptable for prediction of SCC in raw milk.  相似文献   

11.
In the present study, boosting has been combined with partial least‐squares discriminant analysis (PLS‐DA) to develop a new pattern recognition method called boosting partial least‐squares discriminant analysis (BPLS‐DA). BPLS‐DA is implemented by firstly constructing a series of PLS‐DA models on the various weighted versions of the original calibration set and then combining the predictions from the constructed PLS‐DA models to obtain the integrative results by weighted majority vote. Coupled with near infrared (NIR) spectroscopy, BPLS‐DA has been applied to discriminate different kinds of tea varieties. As comparisons to BPLS‐DA, the conventional principal component analysis, linear discriminant analysis (LDA), and PLS‐DA have also been investigated. Experimental results have shown that the inter‐variety difference can be accurately and rapidly distinguished via NIR spectroscopy coupled with BPLS‐DA. Moreover, the introduction of boosting drastically enhances the performance of an individual PLS‐DA, and BPLS‐DA is a well‐performed pattern recognition technique superior to LDA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a multivariate regression method for simultaneous detection of sugar (sucrose as a sugar equivalent) and ethanol concentrations in aqueous solutions via temperature‐dependent ultrasonic velocity. Thus, several samples of different combined concentration values were exposed to a temperature spectrum ranging from 2 to 30°C to investigate the temperature dependence of ultrasonic velocity. Model calibration was performed in order to predict the concentrations of interest. With results of proceeded experiments, the equations for calculation of unknown concentrations were carried out using polynomial regression revealing two equations with functional dependence of concentrations on each other. Further, side effects or systematic errors are still included in this model. To avoid such problems as well as to increase the accuracy with respect to the absolute errors in determining unknown probes, multivariate regression methods such as partial least squares (PLS) were tested and compared to the results obtained by polynomial regression. The accuracy achieved with chemometric models on average was three times higher. In direct comparison, the values of the error for the prediction of sucrose concentration were on average around 0.4 g/100 g in the regression model with polynomial background (RMPA) and around 0.12 g/100 g in the PLS model, and for ethanol concentration 0.13 and 0.04 g/100 g, respectively. Furthermore, calculations of the concentrations are possible without knowing the concentrations of the other solute. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
荧光光度法同时测定邻苯二酚、间苯二酚与对苯二酚   总被引:1,自引:0,他引:1  
将一种直接信号校正(DOSC)-小波包变换(WPT)-偏最小二乘法(PLS)(DOSC-WPT-PLS)新方法用于解析荧光光谱严重重叠的邻苯二酚?间苯二酚和对苯二酚混合物,并对其进行测定。该法将DOSC、WPT及PLS 3种方法结合从而提高了获取特征信息的能力和回归质量。DOSC方法用于除去与浓度无关的结构噪音。利用WPT的时域和频域局部化的特点改进了除噪质量和数据压缩及信息提取能力。PLS方法用于多变量校准和噪音消除。处理该3种组分的荧光光谱数据,并实现了3种化合物的同时测定。设计了PDOSCWPTPLS程序执行相关计算,并对以上3种化学计量学方法进行了比较,其总体相对预测标准偏差分别为4.3%、7.7%、11.5%,结果表明DOSC-WPT-PLS法优于WPT-PLS法和PLS法。将该法用于测定自来水中邻苯二酚?间苯二酚和对苯二酚的含量,其回收率分别为99%~110%?95%~108%和98%~104%,结果满意。  相似文献   

14.
Differential Pulse Voltammetry has been used for the simultaneous determination of cysteine, tyrosine and trptophan on the unmodified glassy carbon electrode. In the analysis of these analytes in the same samples, the main difficulty is the high degree of overlapping of voltammograms. The relationships between the currents and the concentrations are complex and highly nonlinear. The predictive ability of principal component regression (PCR), partial least squares regression (PLS), genetic algorithm‐partial least squares regression (GA‐PLS) and principal component‐artificial neural networks (PC‐ANNs) were examined for simultaneous determination of three amino acids. For a regression model, everything that could not help in constructing the model may be considered as noise without further specification. PC‐ANN and GA‐PLS use significant data and show superiority over other applied multivariate methods. The proposed method was also applied satisfactorily to determination of analytes in some synthetic samples.  相似文献   

15.
Ni Xin  Qinghua Meng  Yizhen Li  Yuzhu Hu 《中国化学》2011,29(11):2533-2540
This paper indicates the possibility to use near infrared (NIR) spectral similarity as a rapid method to estimate the quality of Flos Lonicerae. Variable selection together with modelling techniques is utilized to select representative variables that are used to calculate the similarity. NIR is used to build calibration models to predict the bacteriostatic activity of Flos Lonicerae. For the determination of the bacteriostatic activity, the in vitro experiment is used. Models are built for the Gram‐positive bacteria and also for the Gram‐negative bacteria. A genetic algorithm combined with partial least squares regression (GA‐PLS) is used to perform the calibration. The results of GA‐PLS models are compared to interval partial least squares (iPLS) models, full‐spectrum PLS and full‐spectrum principal component regression (PCR) models. Then, the variables in the two GA‐PLS models are combined and then used to calculate the NIR spectral similarity of samples. The similarity based on the characteristic variables and full spectrum is used for evaluating the fingerprints of Flos Lonicerae, respectively. The results show that the combination of variable selection method, modelling techniques and similarity analysis might be a powerful tool for quality control of traditional Chinese medicine (TCM).  相似文献   

16.
Metal ions such as Co(II), Ni(II), Cu(II), Fe(III) and Cr(III), which are commonly present in electroplating baths at high concentrations, were analysed simultaneously by a spectrophotometric method modified by the inclusion of the ethylenediaminetetraacetate (EDTA) solution as a chromogenic reagent. The prediction of the metal ion concentrations was facilitated by the use of an orthogonal array design to build a calibration data set consisting of absorption spectra collected in the 370-760 nm range from solution mixtures containing the five metal ions earlier. With the aid of this data set, calibration models were built based on 10 different chemometrics methods such as classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), artificial neural networks (ANN) and others. These were tested with the use of a validation data set constructed from synthetic solutions of the five metal ions. The analytical performance of these chemometrics methods were characterized by relative prediction errors and recoveries (%). On the basis of these results, the computational methods were ranked according to their performances using the multi-criteria decision making procedures preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA). PLS and PCR models applied to the spectral data matrix that used the first derivative pre-treatment were the preferred methods. They together with ANN-radial basis function (RBF) and PLS were applied for analysis of results from some typical industrial samples analysed by the EDTA-spectrophotometric method described. DPLS, DPCR and the ANN-RBF chemometrics methods performed particularly well especially when compared with some target values provided by industry.  相似文献   

17.
A novel near infrared (NIR) modeling method—Laplacian regularized least squares regression (LapRLSR) was presented, which can take the advantage of many unlabeled spectra to promote the prediction performance of the model even if there are only few calibration samples. Using LapRLSR modeling, NIR spectral analysis was applied to the online monitoring of the concentration of salvia acid B in the column separation of Salvianolate. The results demonstrated that LapRLSR outperformed partial least squares (PLS) significantly, and NIR online analysis was applicable.  相似文献   

18.
Two‐way and three‐way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three‐way calibrations for the decomposition of the tensor, whereas three‐way unfolded partial least squares was applied as a two‐way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two‐way and three‐way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two‐way and three‐way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole.  相似文献   

19.
A simple and reliable method for simultaneous spectrophotometric determination of iron(II) and cobalt(II) has been established. The method is based on complex formation with 1‐(2‐pyridylazo)‐2‐naphtol (PAN) in a micellar medium. Despite a spectral overlap, Fe2+ and Co2+ have been simultaneously determined with chemometric approaches involving principal component artificial neural network (PC‐ANN), principal component regression (PCR) and partial least squares (PLS). Various synthetic mixtures of iron and cobalt were assessed and the results obtained by the applications of these chemometric approaches were evaluated and compared. It was found that the PC‐ANN method afforded relatively better precision than that of PCR or PLS. The proposed method permits detection limits of 0.05 and 0.07 ng mL?1 for Co and Fe, respectively. The influences of pH, ligand amount, solvent percentage and time on the absorbance were also investigated. The proposed method was also applied satisfactorily for the determination of Fe(II) and Co(II) in real and synthetic samples.  相似文献   

20.
The insight from, and conclusions of this paper motivate efficient and numerically robust ‘new’ variants of algorithms for solving the single response partial least squares regression (PLS1) problem. Prototype MATLAB code for these variants are included in the Appendix. The analysis of and conclusions regarding PLS1 modelling are based on a rich and nontrivial application of numerous key concepts from elementary linear algebra. The investigation starts with a simple analysis of the nonlinear iterative partial least squares (NIPALS) PLS1 algorithm variant computing orthonormal scores and weights. A rigorous interpretation of the squared P ‐loadings as the variable‐wise explained sum of squares is presented. We show that the orthonormal row‐subspace basis of W ‐weights can be found from a recurrence equation. Consequently, the NIPALS deflation steps of the centered predictor matrix can be replaced by a corresponding sequence of Gram–Schmidt steps that compute the orthonormal column‐subspace basis of T ‐scores from the associated non‐orthogonal scores. The transitions between the non‐orthogonal and orthonormal scores and weights (illustrated by an easy‐to‐grasp commutative diagram), respectively, are both given by QR factorizations of the non‐orthogonal matrices. The properties of singular value decomposition combined with the mappings between the alternative representations of the PLS1 ‘truncated’ X data (including P t W ) are taken to justify an invariance principle to distinguish between the PLS1 truncation alternatives. The fundamental orthogonal truncation of PLS1 is illustrated by a Lanczos bidiagonalization type of algorithm where the predictor matrix deflation is required to be different from the standard NIPALS deflation. A mathematical argument concluding the PLS1 inconsistency debate (published in 2009 in this journal) is also presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号