首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定深海沉积物中稀土总量的方法。将深海沉积物湿样烘干、压碎,剔除杂质,过筛后再次烘干。称取0.20 g样品于微波消解罐中,加入5.0 mL硝酸和2.0 mL氢氟酸,在程序升温条件下进行微波消解,结束后加入3.0 mL高氯酸进行赶酸,再加入50%(体积分数)硝酸溶液加热溶解样品中的盐类。冷却后,用水定容至50 mL。分取5.0 mL,用2%(体积分数)硝酸溶液定容至50 mL,在线加入10μg·L~(-1)铟内标溶液,按照优化的ICP-MS工作条件测定稀土氧化物含量。结果显示:15种稀土氧化物的质量浓度在一定范围内和其与内标元素铟响应值的比值呈线性关系,相关系数均为0.999 9,检出限(3s)为0.006 2~0.060 0μg·g~(-1)。对3种深海沉积物样品进行精密度、加标回收及方法比对试验,结果显示:所得测定值的相对标准偏差(n=11)为1.1%~2.9%,回收率为96.0%~104%,方法和国家标准方法GB/T 17417.1-2010所得的测定值基本一致。  相似文献   

2.
提出了用微波消解-电感耦合等离子体质谱法测定有机肥料中砷、镉、铅、铬、汞等5种元素的方法。有机肥料样品(0.200 0~0.500 0g)加入硝酸10mL和过氧化氢溶液1mL,按程序升温微波消解,将消解液蒸发至2mL,用硝酸(1+99)溶液定容至50mL。用电感耦合等离子体质谱法测定上述样液中的砷、镉、铅、铬、汞等元素。各元素的检出限(3.3s/k)为0.015~0.040mg·kg~(-1),测定值的相对标准偏差(n=6)均小于5.0%。按标准加入法进行回收试验,测得回收率在98.0%~101%之间。  相似文献   

3.
取硬金样品约0.1g,加入新配制的盐酸-硝酸(3+1)混合酸6mL,按消解程序进行微波消解。待消解结束后将溶液于80℃加热赶去氮氧化物,冷却至室温后用水定容至50mL,用电感耦合等离子体原子发射光谱法测定其中铅、砷、汞、镉的含量。各元素的质量浓度均在0.10~10.0mg·L~(-1)内与对应的发射强度呈线性关系,检出限(3s)为2.0~8.0mg·kg~(-1)。加标回收率为91.0%~103%。应用该方法分析了21批次3D硬金饰品,测定结果与电感耦合等离子体质谱法的一致,测定值的相对标准偏差(n=6)小于3.0%。  相似文献   

4.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

5.
称取一定量已切碎、捣碎并混匀的酸菜样品用硝酸及过氧化氢先在90℃水浴中消解约20min,然后将溶液冷却,移入微波消解仪中消解。消解完毕后将溶液冷至室温,移入25mL容量瓶中,加入50g·L~(-1)硫脲-50g·L~(-1)抗坏血酸混合溶液5 mL,加水定容。在所选定的仪器条件下用14g·L~(-1)硼氢化钾溶液作还原剂生成砷的氢化物进行测定。砷的质量浓度在10.00μg·L~(-1)以内与相应的荧光强度值呈线性关系。方法的检出限(3s/k)为0.064μg·L~(-1),测得方法的回收率在89.0%~102.5%之间,测定值的相对标准偏差(n=6)为1.7%。  相似文献   

6.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

7.
取齿轮油样品0.300 0g,加入硝酸15mL,过氧化氢5mL及高氯酸1mL,按程序升温加热模式进行微波消解。所得消解后的溶液于180℃蒸发至近干,加水定容至20mL。采用电感耦合等离子体质谱法测定此溶液中铅、砷、铬、镉的含量,以内标法补偿基体效应。铅、砷、铬、镉的质量浓度在1.00~50.0μg·L-1范围内与其对应的信号强度呈线性关系,检出限(3S/N)依次为0.05,0.006,0.04,0.003μg·L-1。按标准加入法进行回收试验,回收率为81.3%~96.4%,测定值的相对标准偏差(n=6)为1.2%~4.3%。  相似文献   

8.
称取经四分采样,风干并粉碎过0.149mm孔径样筛的土壤样品0.200 0g,置于消解罐中,加入选定的酸体系(HNO36mL,HCl 2mL及HF 2mL)。将消解罐置于微波消解仪中按程序升温模式进行消解。将消解罐移至赶酸仪中,于170℃使溶液蒸缩至2~3mL。溶液中有残留黑色不溶物,加入高氯酸3mL,于180℃继续加热消解至样品溶解完全,将溶液蒸缩至黏稠状,冷却后,将溶液用硝酸(1+99)溶液洗涤并定容至25.0mL。按仪器工作条件采用电感耦合等离子体原子发射光谱法在所选定的分析谱线处测定其中8种重金属元素(Co、Cr、Cu、Ni、Mn、Pb、V及Zn)的含量。8种元素的质量浓度在一定范围内与其信号强度值呈线性关系,测得8种元素的检出限(3s)在0.3~6.6μg·L~(-1)范围内,其测定值的相对标准偏差(n=6)均小于2%。  相似文献   

9.
称取0.250 0 g样品,以2.5 mL盐酸、2.5 mL硝酸、2.5 mL氢氟酸和5 mL高氯酸为酸体系,设置消解温度为110~150℃;消解结束后,趁热加入盐酸(还原剂) 5 mL和10 g·L^(-1)三氯化铁溶液(掩蔽剂) 5 mL,再用水稀释至25 mL,得到待测样品溶液,采用氢化物发生原子荧光光谱法测定其中全硒的含量。结果显示:硒的质量浓度在20.00μg·L^(-1)以内与其对应的响应值呈线性关系,检出限(3s/k)为0.06μg·L^(-1);对岩石、土壤和水系沉积物国家标准物质进行验证,测定值的相对标准偏差(n=6)为0.68%~2.5%,回收率为94.0%~110%。  相似文献   

10.
应用轴向观测电感耦合等离子体原子发射光谱法测定了天然纺织纤维中24种元素的含量。称取样品0.5g,用硝酸8mL在程序升温(150℃~200℃)的条件下微波消解40min,所得溶液用7mol·L-1硝酸溶液定容至25mL后分析。选用棉纤维标准物质IAEA-V-9按上述方法处理作为质控样品。所选择的仪器工作条件:①雾化气流量0.8L·min-1;②射频功率1 250W;③手动进样读数时间60s。结果表明:24种元素的检出限(3s)在0.3~59.7μg·L-1之间。各元素在10.0mg·L-1范围内呈线性。样品经微波消解未引起被测元素的损失。用此方法分析了IAEA-V-9标准物质,所测14种元素的测定值(n=11)与认定值之间的相对误差在-38.8%~49.6%之间。  相似文献   

11.
应用氢化物发生-原子荧光光谱法测定了土壤及生物样品中铅和汞。样品用硝酸4mL及过氧化氢1mL按微波消解仪的工作参数进行消解,消解后溶液定容至25mL供测定。用30g·L-1柠檬酸溶液和硝酸(1+99)溶液的混合液作载流,根据铅(Ⅱ)离子的反应和试液对酸度的要求,选用含15g·L-1硼氢化钾,10g·L-1铁氰化钾和20g·L-1氢氧化钾的混合溶液作为还原剂。方法的检出限(3s/k)为0.512μg·L-1(铅)和0.067μg·L-1(汞)。应用此方法分析了3种实样并进行加标回收试验,测得回收率分别在91.0%~97.0%(铅)和88.0%~95.5%(汞)之间。  相似文献   

12.
采用氢化物发生-原子荧光光谱法测定大蒜中砷和硒。样品经硝酸和高氯酸消解,在盐酸(5+95)溶液中,加入溶于50g·L~(-1)氢氧化钠溶液的20g·L~(-1)硼氢化钾溶液,使其与溶液中砷及硒离子反应生成氢化物。分析中采用载气流量依次为800mL·min~(-1),600mL·min~(-1),屏蔽气的流量均为1000mL·min~(-1)。试样溶液中加入硫脲-抗坏血酸混合溶液作为还原剂。于仪器中引入试样溶液0.5mL,按选定的工作条件操作。砷及硒的质量浓度分别在0.04~0.40,1.00~10.0μg·L~(-1)范围内与其荧光强度呈线性关系,方法的检出限(3s/k)砷为0.017μg·L~(-1),硒为0.314μg·L~(-1)。分别加入两元素的标准溶液作回收试验,测得砷和硒的回收率分别在95.3%~104.4%和94.7%~105.2%之间。  相似文献   

13.
提出了微波酸溶-电感耦合等离子体质谱法(ICP-MS)同时测定固体废物中17种元素的方法。取固体废物样品0.1~0.2g(称准至±0.1mg)加入硝酸-氢氟酸-盐酸-过氧化氢(4+1+1+1)混合液7mL,于175℃微波消解20min,将消解液于150℃蒸发至近干,加水溶解残渣并定容至50mL。取固体废物浸出液25.00mL,加入硝酸-盐酸(4+1)混合酸5mL,于165℃微波消解10min后,按上述手续处理后作为样液。用电感耦合等离子体质谱法测定上述两类样液中17种元素。各元素测定值的相对标准偏差(n=6)分别在4.5%~12%之间(固体样品)和0.4%~15%之间(浸出液样品);加标回收率分别在89.1%~116%和82.4%~113%之间。按所提出方法分析了一个CRM(TCLPlot#7044-52,ISS1),测定值与认定值一致。  相似文献   

14.
取经清洗、粉碎并烘干的样品0.500 0g,用硝酸5mL及过氧化氢3mL,按程序升温模式微波消解。消解液于沸水浴中蒸发至约1mL,用水定容至50mL。取此溶液5.00mL依次加入0.2g·L^(-1) 5-Br-PADAP溶液2.0mL,氨性缓冲溶液(pH 9.0)3.0mL及100g·L^(-1) Triton X-114溶液3.0mL,加水定容至25mL,摇匀,使Cd^(2+)生成络合物,10min后加入辛醇1.0mL,涡旋混合1min,离心5min,吸出下层溶液,取出上层红色有机层,用乙醇定容至3mL,于540nm处用1cm比色皿测得其吸光度。镉的质量浓度在10.00mg·L^(-1)以内与吸光度呈线性关系,检出限(3s)为0.05mg·L^(-1)。加标回收率为93.3%~103%,测定值的相对标准偏差(n=6)小于5.0%。  相似文献   

15.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L^(-1),检出限(3s)为6.75μg·L^(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

16.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L~(-1),检出限(3s)为6.75μg·L~(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

17.
取经清洗、粉碎并烘干的样品0.500 0g,用硝酸5mL及过氧化氢3mL,按程序升温模式微波消解。消解液于沸水浴中蒸发至约1mL,用水定容至50mL。取此溶液5.00mL依次加入0.2g·L~(-1) 5-Br-PADAP溶液2.0mL,氨性缓冲溶液(pH 9.0)3.0mL及100g·L~(-1) Triton X-114溶液3.0mL,加水定容至25mL,摇匀,使Cd~(2+)生成络合物,10min后加入辛醇1.0mL,涡旋混合1min,离心5min,吸出下层溶液,取出上层红色有机层,用乙醇定容至3mL,于540nm处用1cm比色皿测得其吸光度。镉的质量浓度在10.00mg·L~(-1)以内与吸光度呈线性关系,检出限(3s)为0.05mg·L~(-1)。加标回收率为93.3%~103%,测定值的相对标准偏差(n=6)小于5.0%。  相似文献   

18.
建立了硅藻土负载N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)分离柱分离,电感耦合等离子体质谱法(ICP-MS)测定氧化铈中氧化钆、氧化铽含量的方法。试样用50%(体积分数)硝酸溶液和30%过氧化氢溶解,取含氧化铈50 mg的样品溶液导入自制的硅藻土负载TODGA的分离柱(连接一个蠕动泵,用于控制流量),用pH 1.5的硝酸溶液以2.0 mL·min~(-1)流量淋洗分离柱,直至淋洗液中铈的质量浓度小于1 000μg·L~(-1)。用60 mL pH 0.92的盐酸溶液以2.0 mL·min~(-1)流量反洗待测元素钆和铽,弃去前20 mL反洗液,收集后40 mL反洗液并用水稀释至50 mL。在线加入10μg·L~(-1)铯内标溶液,用ICP-MS分析样品溶液中目标物的含量。结果显示,氧化钆、氧化铽的质量浓度均在50.00μg·L~(-1)以内与其对应的待测元素与内标元素强度比值呈线性关系,检出限(3s)分别为0.102,0.049μg·g~(-1)。方法用于实际样品分析,氧化钆和氧化铽的测定值分别为0.73,0.68μg·g~(-1),测定值的相对标准偏差(n=11)为4.8%和5.2%,加标回收率分别为101%和99.0%。  相似文献   

19.
对国家标准GB 5009.124-2016测定食品中16种氨基酸(天冬氨酸、苏氨酸、丝氨酸、谷氨酸、脯氨酸、甘氨酸、丙氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、组氨酸、赖氨酸、精氨酸)含量进行了方法改进。改进后的酸水解条件如下:称取样品1 g于聚四氟乙烯管中,加入含0.1%(质量分数)苯酚的6 mol·L-1盐酸溶液10 mL,充氮后封口,酸水解温度为165℃,酸水解时间由原来的22 h缩短至1 h。并提出了微波消解的前处理方法,其条件如下:称取样品约0.1 g于石英罐中,加入6 mol·L-1盐酸溶液1 mL,将其放进装有6 mol·L-1盐酸溶液的聚四氟乙烯罐中,充氮除氧,封盖后放入消解仪,微波消解温度为165℃,消解时间为12 min。以LCA K06/Na色谱柱为固定相,按照优化后的柱升温程序和梯度洗脱程序对16种氨基酸进行分离。结果表明:16种氨基酸的浓度在10~200μmol·L-1内与其对应的峰面积呈线性关系,检出限为0.000 11%~0.004 2%;对猪瘦肉进行3...  相似文献   

20.
向2.500 0g样品中加入3mol·L~(-1)硝酸溶液10mL后滴加氢氟酸至溶解完全,冷却后定容至50mL。取此样品溶液5.00mL,加入若干17种元素的混合标准溶液并由3mol·L~(-1)硝酸溶液定容至50mL,采用电感耦合等离子体原子发射光谱法测定各元素的含量。标准加入法可克服基体干扰,各元素分析线的强度与其质量浓度呈线性关系。Co、Cu、Mn、Mo、Ni、Pb、V、Ti的线性范围为0.10~2.0mg·L~(-1),Al、Cr、Hf、Mg、Nb、Ta、Zn的线性范围为0.20~4.0mg·L~(-1),Fe、Sn的线性范围为0.40~8.0mg·L~(-1),17种微量杂质元素的检出限(3s)在1.0~50μg·L~(-1)之间。加标回收率在90.0%~108%之间,测定值的相对标准偏差(n=6)小于10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号