首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

2.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

3.
Structures, energetics, and vibrational spectra are investigated for small pure (TiO(2))(n), (SiO(2))(n), and mixed Ti(m)Si(n-m)O(2n) [n = 2-5, m = 1 to (n - 1)] oxide clusters by density functional theory (DFT). The BP86/ATZP level of theory is employed to obtain constitutional isomers of the oxide clusters. In accordance with previous studies, our calculations show three-dimensional compact structures are preferred for pure (TiO(2))(n) with oxo-stabilized higher hexavalent states, and linear chain structures are favored for pure (SiO(2))(n) with tetravalent states. However, the herein theoretically first reported mixed Ti(m)Si(n-m)O(2n) oxide clusters prefer either three-dimensional compact or linear chain structures depending upon the stoichiometry of the compound. Vibrational analysis of the important modes of some highly stable structures is provided. Coupled-cluster single and double excitation (with triples) [CCSD(T)] computed energy gaps for the TiO(2) dimers compare well with results from previous study. Excitation energies are computed by use of time-dependent (TD) DFT and equation-of-motion coupled-cluster calculations with singles and doubles (EOM-CCSD) for the most stable isomers.  相似文献   

4.
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.  相似文献   

5.
Ab initio and Density Functional Theory (DFT) calculations have been carried out for zinc-water clusters Zn(n)-(H2O)(m) (n = 1-32 and m = 1-3, where n and m are the numbers of zinc atoms and water molecules, respectively) to elucidate the structure and electronic states of the clusters and the interaction of zinc cluster with water molecules. The binding energies of H2O to zinc clusters were small at n = 2-3 (2.3-4.2 kcal mol(-1)), whereas the energy increased significantly in n = 4 (9.0 kcal mol(-1)). Also, the binding nature of H2O was changed at n = 4. The cluster size dependency of the binding energy of H2O accorded well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in surface regions of the zinc cluster have a positive charge, whereas those in the interior region have a negative charge with the large electron population in the 4p orbital. The interaction of H2O with the zinc clusters were discussed on the basis of the theoretical results.  相似文献   

6.
采用密度泛函理论B3LYP方法, 在B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p)基组水平上对乙醇-水分子团簇(C2H5OH(H2O)n (n=1-9))的各种性质进行研究, 如: 优化的几何构型、结构参数、氢键、结合能、平均氢键强度、自然键轨道(NBO)电荷分布、团簇的生长规律等. 结果表明, 从二维(2-D)环状结构到三维(3-D)笼状结构的过渡出现在n=5的乙醇-水分子团簇中. 此外, 利用团簇结合能的二阶差分、形成能、能隙等性质, 发现在n=6时乙醇-水分子团簇的最低能量结构稳定性较好, 可能为幻数结构. 最后, 为了进一步探讨氢键本质, 将C2H5OH(H2O)n (n=2-9)最低能量结构的各种性质与纯水分子团簇(H2O)n (n=3-10)比较, 结果表明前者与后者中的水分子之间氢键相似.  相似文献   

7.
The structures of hydrated 1-hydroxyanthraquinone complexes (1-HAQ), 1-HAQ(H2O)n=1,2, with intramolecular and intermolecular hydrogen bonding interactions were studied using laser spectroscopic methods such as laser induced fluorescence, fluorescence-detected infrared, infrared-visible hole burning, and visible-visible hole burning spectroscopy. In the 1:1 complex 1-HAQ(H2O)1, the water binds to the free carbonyl group of 1-HAQ not associated with intramolecular hydrogen bond. The second water in the 1:2 complex, 1-HAQ(H2O)2, binds to the first water of the 1:1 complex rather than other hydrogen bonding sites of 1-HAQ. A pair of two geometric isomers was produced in a supersonic jet for each of the 1:1 and 1:2 complexes. Both isomers of each complex have the same vibrational spectra in the region of the OH stretching vibration of water, but have different energies for the 0-0 band of vibronic transition due to the asymmetry of the two phenyl rings in 1-HAQ. The 0-0 bands for all four species of 1-HAQ(H2O)n=1,2 were unambiguously assigned by comparing with the results of ab initio calculations, which yielded the structures, vibrational frequencies, and relative energies of the frontier molecular orbitals.  相似文献   

8.
We report a systematic and comprehensive investigation of the electronic structures and chemical bonding in a series of ditungsten oxide clusters, W2O(n)- and W2O(n) (n = 1-6), using anion photoelectron spectroscopy and density functional theory (DFT) calculations. Well-resolved photoelectron spectra were obtained at several photon energies (2.331, 3.496, 4.661, 6.424, and 7.866 eV), and W 5d-based spectral features were clearly observed and distinguished from O 2p-based features. More complicated spectral features were observed for the oxygen-deficient clusters because of the W 5d electrons. With increasing oxygen content in W2O(n)-, the photoelectron spectra were observed to shift gradually to higher binding energies, accompanied by a decreasing number of W 5d-derived features. A behavior of sequential oxidation as a result of charge transfers from W to O was clearly observed. A large energy gap (2.8 eV) was observed in the spectrum of W2O6-, indicating the high electronic stability of the stoichiometric W2O6 molecule. Extensive DFT calculations were carried out to search for the most stable structures of both the anion and neutral clusters. Time-dependent DFT method was used to compute the vertical detachment energies and compare to the experimental data. Molecular orbitals were used to analyze the chemical bonding in the ditungsten oxide clusters and to elucidate their electronic and structural evolution.  相似文献   

9.
The structures and energies of hydrated oxalate clusters, C2O4(2-)(H2O)n, n = 6-12, are obtained by density functional theory (DFT) calculations and compared to SO4(2-)(H2O)n. Although the evolution of the cluster structure with size is similar to that of SO4(2-)(H2O)n, there are a number of important and distinctive futures in C2O4(2-)(H2O)n, including the separation of the two charges due to the C-C bond in C2O4(2-), the lower symmetry around C2O4(2-), and the torsion along the C-C bond, that affect both the structure and the solvation energy. The solvation dynamics for the isomers of C2O4(2-)(H2O)12 are also examined by DFT based ab initio molecular dynamics.  相似文献   

10.
The gas phase structure, stability, spectra, and proton transfer properties of monoprotic carborane acid-water clusters [CB(11)F(m)H(11-m)(OH(2))(1)]-(H(2)O)(n) (where m = 0, 5, and 10; n = 1-6) have been calculated using density functional theory (DFT) with the Becke's three-parameter hybrid exchange functional and Lee-Yang-Parr correlation functional (B3LYP) using 6-31+G* basis set. Results reveal that Eigen cation defects are found in CBW(n) (where n = 2-6) clusters and these clusters are significantly more stable than the non-Eigen geometry. In addition to the conventional hydrogen bond (H-bond) the role of dihydrogen bond (DHB) and halogen bond (XB) in the stabilization of these clusters can be observed from the molecular graphs derived from the atoms in molecules (AIM) analysis. Spectral information shows the features of Eigen cation and proton oscillation involved in the proton transfer process. The dissociation of proton from the perfluoro derivatives with two water molecules is more favorable when compared to the other derivatives.  相似文献   

11.
Photoelectron spectroscopy is combined with ab initio calculations to study the microsolvation of the dicyanamide anion, N(CN)(2)(-). Photoelectron spectra of [N(CN)(2)(-)](H2O)n (n = 0-12) have been measured at room temperature and also at low temperature for n = 0-4. Vibrationally resolved photoelectron spectra are obtained for N(CN)(2)(-), allowing the electron affinity of the N(CN)2 radical to be determined accurately as 4.135 +/- 0.010 eV. The electron binding energies and the spectral width of the hydrated clusters are observed to increase with the number of water molecules. The first five waters are observed to provide significant stabilization to the solute, whereas the stabilization becomes weaker for n > 5. The spectral width, which carries information about the solvent reorganization upon electron detachment in [N(CN)(2)(-)](H2O)n, levels off for n > 6. Theoretical calculations reveal several close-lying isomers for n = 1 and 2 due to the fact that the N(CN)(2)(-) anion possesses three almost equivalent hydration sites. In all the hydrated clusters, the most stable structures consist of a water cluster solvating one end of the N(CN)(2)(-) anion.  相似文献   

12.
The first mass-selective vibrational spectra have been recorded for Na(NH3)n clusters. Infrared spectra have been obtained for n = 3-8 in the N-H stretching region. The spectroscopic work has been supported by ab initio calculations carried out at both the DFT(B3LYP) and MP2 levels, using a 6-311++G(d,p) basis set. The calculations reveal that the lowest energy isomer for n or= 7 is indicative of molecules entering a second solvation shell, i.e., the inner solvation shell around the sodium atom can accommodate a maximum of six NH3 molecules.  相似文献   

13.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

14.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

15.
Extensive density functional theory (DFT) calculations are carried out on various structural isomers of protonated methanol clusters, H(+)(MeOH)n (n = 2-9), to analyze the morphological development of the hydrogen bond network in the clusters with an increase of the cluster size. Coexistence of multiple structural isomers is demonstrated by the nearly degenerated energies. Moreover, significant temperature dependence of the preferential isomer structure is shown by the calculated Gibbs free energies. The previously reported infrared spectra of H(+)(MeOH)n (J. Phys. Chem. A 2005, 109, 138) are revisited on the basis of the spectral simulations of the isomers by DFT calculations.  相似文献   

16.
The molecular structures, electron affinities, and dissociation energies of the Si(n)H/Si(n)H- (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first Si-H dissociation energies, D(e)(Si(n)H --> Si(n) + H) for neutral Si(n)H and D(e)(Si(n)H- --> Si(n)- + H) for anionic Si(n)H- species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si5H, Si6H, Si8H, and Si9H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tight-binding molecular dynamics schemes. The most reliable EA(ad) values obtained at the B3LYP level of theory are 2.59 (Si4H), 2.84 (Si5H), 2.86 (Si6H), 3.19 (Si7H), 3.14 (Si8H), 3.36 (Si9H), and 3.56 (Si10H) eV. The first dissociation energies (Si(n)H --> Si(n) + H) predicted by all of these methods are 2.20-2.29 (Si4H), 2.30-2.83 (Si5H), 2.12-2.41 (Si6H), 1.75-2.03 (Si7H), 2.41-2.72 (Si8H), 1.86-2.11 (Si9H), and 1.92-2.27 (Si10H) eV. For the negatively charged ion clusters (Si(n)H- --> Si(n)- + H), the dissociation energies predicted are 2.56-2.69 (Si4H-), 2.80-3.01 (Si5H-), 2.86-3.06 (Si6H-), 2.80-3.03 (Si7H-), 2.69-2.92 (Si8H-), 2.92-3.18 (Si9H-), and 2.89-3.25 (Si10H-) eV.  相似文献   

17.
We performed an unbiased search for low-energy structures of medium-sized neutral Si n and Ge n clusters ( n = 25-33) using a genetic algorithm (GA) coupled with tight-binding interatomic potentials. Structural candidates obtained from our GA search were further optimized by first-principles calculations using density functional theory (DFT). Our approach reproduces well the lowest-energy structures of Si n and Ge n clusters of n = 25-29 compared to previous studies, showing the accuracy and reliability of our approach. In the present study, we pay more attention to determine low-lying isomers of Si n and Ge n ( n = 29-33) and study the growth patterns of these clusters. The B3LYP calculations suggest that the growth pattern of Si n ( n = 25-33) clusters undergoes a transition from prolate to cage at n = 31, while this transition appears at n = 26 from the PBE-calculated results. In the size range of 25-33, the corresponding Ge n clusters hold the prolate growth pattern. The relative stabilities and different structural motifs of Si n and Ge n ( n = 25-33) clusters were studied, and the changes of small cluster structures, when acting as building blocks of large clusters, were also discussed.  相似文献   

18.
Computations on all the possible positional isomers of the closo-azaboranes NB(n)()(-)(1)H(n)() (n = 5-12) reveal substantial differences in the relative energies. Data at the B3LYP/6-311+G level of density functional theory (DFT) agree well with expectations based on the topological charge stabilization, with the qualitative connectivity preferences of Williams, and with the Jemmis-Schleyer six interstitial electron rules. The energetic relationship involving each of the most stable positional isomers, 1-NB(4)H(5), NB(5)H(6), 2-NB(6)H(7), 1-NB(7)H(8), 4-NB(8)H(9), 1-NB(9)H(10), 2-NB(10)H(11), NB(11)H(12), was based on the energies (DeltaH) of the model reaction: NBH(2) + (n-1)BH(increment) --> NB(n)()H(n)()(+1) (n = 4-11). This evaluation shows that the stabilities of closo-azaboranes NB(n)()(-)(1)H(n)() (n = 5-12) increase with increasing cluster size from 5 to 12 vertexes. The "three-dimensional aromaticity" of these closo-azaboranes NB(n)()(-)(1)H(n)() (n = 5-12) is demonstrated by their the nucleus-independent chemical shifts (NICS) and their magnetic susceptibilities (chi), which match one another well. However, there is no direct relationship between these magnetic properties and the relative stabilities of the positional isomers of each cluster. As expected, other energy contributions such as topological charge stabilization and connectivity can be equally important.  相似文献   

19.
The infrared photodissociation spectra of [(CO 2) n (CH 3OH) m ] (-) ( n = 1-4, m = 1, 2) are measured in the 2700-3700 cm (-1) range. The observed spectra consist of an intense broad band characteristic of hydrogen-bonded OH stretching vibrations at approximately 3300 cm (-1) and congested vibrational bands around 2900 cm (-1). No photofragment signal is observed for [(CO 2) 1,2(CH 3OH) 1] (-) in the spectral range studied. Ab initio calculations are performed at the MP2/6-311++G** level to obtain structural information such as optimized structures, stabilization energies, and vibrational frequencies of [(CO 2) n (CH 3OH) m ] (-). Comparison between the experimental and the theoretical results reveals the structural properties of [(CO 2) n (CH 3OH) m ] (-): (1) the incorporated CH 3OH interacts directly with either CO 2 (-) or C 2O 4 (-) core by forming an O-HO linkage; (2) the introduction of CH 3OH promotes charge localization in the clusters via the hydrogen-bond formation, resulting in the predominance of CO 2 (-).(CH 3OH) m (CO 2) n-1 isomeric forms over C 2O 4 (-).(CH 3OH) m (CO 2) n-2 ; (3) the hydroxyl group of CH 3OH provides an additional solvation cite for neutral CO 2 molecules.  相似文献   

20.
IR-UV ion-dip spectra of the 7-azaindole (7AI)(CH(3)OH)(n) (n=1-3) clusters have been measured in the hydrogen-bonded NH and OH stretching regions to investigate the stable structures of 7AI(CH(3)OH)(n) (n=1-3) in the S(0) state and the cooperativity of the H-bonding interactions in the H-bonded networks. The comparison of the IR-UV ion-dip spectra with IR spectra obtained by quantum chemistry calculations shows that 7AI(CH(3)OH)(n) (n=1-3) have cyclic H-bonded structures, where the NH group and the heteroaromatic N atom of 7AI act as the proton donor and proton acceptor, respectively. The H-bonded OH stretch fundamental of 7AI(CH(3)OH)(2) is remarkably redshifted from the corresponding fundamental of (CH(3)OH)(2) by 286 cm(-1), which is an experimental manifestation of the cooperativity in H-bonding interaction. Similarly, two localized OH fundamentals of 7AI(CH(3)OH)(3) also exhibit large redshifts. The cooperativity of 7AI(CH(3)OH)(n) (n=2,3) is successfully explained by the donor-acceptor electron delocalization interactions between the lone-pair orbital in the proton acceptor and the antibonding orbital in the proton donor in natural bond orbital (NBO) analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号